IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

A Heteroskedasticity Robust Breusch-Pagan Test for Contemporaneous Correlation in Dynamic Panel Data Models

Listed author(s):
  • Andreea Halunga
  • Chris D. Orme
  • Takashi Yamagata

This paper proposes a heteroskedasticity-robust Breusch–Pagan test of the null hypothesis of zero cross-section (or contemporaneous) correlation in linear panel data models, without necessarily assuming independence of the cross-sections. The procedure allows for either fixed, strictly exogenous and/or lagged dependent regressor variables, as well as quite general forms of both non-normality and heteroskedasticity in the error distribution. The asymptotic validity of the test procedure is predicated on the number of time series observations, T, being large relative to the number of cross-section units, N, in that: either (i) N is fixed as T→∞; or, (ii) N2/T→0 as both T and N diverge, jointly, to infinity. Given this, it is not expected that asymptotic theory would necessarily provide an adequate guide to finite sample performance when T/N is “small”. Because of this we also propose, and establish asymptotic validity of, a number of wild bootstrap schemes designed to provide improved inference when T/N is small. Across a variety of experimental designs, a Monte Carlo study suggests that the predictions from asymptotic theory do, in fact, provide a good guide to the finite sample behaviour of the test when T is large relative to N. However, when T and N are of similar orders of magnitude, discrepancies between the nominal and empirical significance levels occur as predicted by the first-order asymptotic analysis. On the other hand, for all the experimental designs, the proposed wild bootstrap approximations do improve agreement between nominal and empirical significance levels, when T/N is small, with a recursive-design wild bootstrap scheme performing best, in general, and providing quite close agreement between the nominal and empirical significance levels of the test even when T and N are of similar size. Moreover, in comparison with the wild bootstrap “version” of the original Breusch–Pagan test (Godfrey and Yamagata, 2011) our experiments indicate that the corres

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hummedia.manchester.ac.uk/schools/soss/economics/discussionpapers/EDP-1118.pdf
Download Restriction: no

Paper provided by Economics, The University of Manchester in its series The School of Economics Discussion Paper Series with number 1118.

as
in new window

Length:
Date of creation: 2011
Handle: RePEc:man:sespap:1118
Contact details of provider: Postal:
Manchester M13 9PL

Phone: (0)161 275 4868
Fax: (0)161 275 4812
Web page: http://www.socialsciences.manchester.ac.uk/subjects/economics/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
  2. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
  3. Bassanini, Andrea & Scarpetta, Stefano, 2002. "Does human capital matter for growth in OECD countries? A pooled mean-group approach," Economics Letters, Elsevier, vol. 74(3), pages 399-405, February.
  4. Su, Liangjun & Chen, Qihui, 2013. "Testing Homogeneity In Panel Data Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 29(06), pages 1079-1135, December.
  5. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
  6. Steve Bond & Asli Leblebicioglu & Fabio Schiantarelli, 2010. "Capital accumulation and growth: a new look at the empirical evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(7), pages 1073-1099, November/.
  7. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
  8. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
  9. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
  10. Godfrey, L.G. & Tremayne, A.R., 2005. "The wild bootstrap and heteroskedasticity-robust tests for serial correlation in dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 377-395, April.
  11. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2008. "Testing for a change in persistence in the presence of non-stationary volatility," Journal of Econometrics, Elsevier, vol. 147(1), pages 84-98, November.
  12. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
  13. M. Hashem Pesaran & Aman Ullah & Takashi Yamagata, 2008. "A bias-adjusted LM test of error cross-section independence," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 105-127, 03.
  14. Pesaran, M.H., 2004. "‘General Diagnostic Tests for Cross Section Dependence in Panels’," Cambridge Working Papers in Economics 0435, Faculty of Economics, University of Cambridge.
  15. Kuersteiner, Guido M., 2001. "Optimal instrumental variables estimation for ARMA models," Journal of Econometrics, Elsevier, vol. 104(2), pages 359-405, September.
  16. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, 07.
  17. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
  18. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
  19. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
  20. Haque, N. U. & Pesaran, M. H. & Sharma, Sunil, 1999. "Neglected Heterogeneity and Dynamics in Cross-country Savings Regressions," Cambridge Working Papers in Economics 9904, Faculty of Economics, University of Cambridge.
  21. Francesco Moscone & Elisa Tosetti, 2009. "A Review And Comparison Of Tests Of Cross-Section Independence In Panels," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 528-561, July.
  22. Frees, Edward W., 1995. "Assessing cross-sectional correlation in panel data," Journal of Econometrics, Elsevier, vol. 69(2), pages 393-414, October.
  23. L Godfrey & T Yamagata, 2010. "A robust test for error cross-section correlation in panel models," Discussion Papers 10/16, Department of Economics, University of York.
  24. Sarafidis, Vasilis & Yamagata, Takashi & Robertson, Donald, 2009. "A test of cross section dependence for a linear dynamic panel model with regressors," Journal of Econometrics, Elsevier, vol. 148(2), pages 149-161, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:man:sespap:1118. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marianne Sensier)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.