IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Does the Box-Cox transformation help in forecasting macroeconomic time series?

  • Tommaso, Proietti
  • Helmut, Luetkepohl

The paper investigates whether transforming a time series leads to an improvement in forecasting accuracy. The class of transformations that is considered is the Box-Cox power transformation, which applies to series measured on a ratio scale. We propose a nonparametric approach for estimating the optimal transformation parameter based on the frequency domain estimation of the prediction error variance, and also conduct an extensive recursive forecast experiment on a large set of seasonal monthly macroeconomic time series related to industrial production and retail turnover. In about one fifth of the series considered the Box-Cox transformation produces forecasts significantly better than the untransformed data at one-step-ahead horizon; in most of the cases the logarithmic transformation is the relevant one. As the forecast horizon increases, the evidence in favour of a transformation becomes less strong. Typically, the na¨ıve predictor that just reverses the transformation leads to a lower mean square error than the optimal predictor at short forecast leads. We also discuss whether the preliminary in-sample frequency domain assessment conducted provides a reliable guidance which series should be transformed for improving significantly the predictive performance.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/32294/1/MPRA_paper_32294.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 32294.

as
in new window

Length:
Date of creation: 18 Jul 2011
Date of revision:
Handle: RePEc:pra:mprapa:32294
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Perry Sadorsky & Michael D. McKenzie, 2008. "Power transformation models and volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 587-606.
  2. Bårdsen, Gunnar & Lütkepohl, Helmut, 2011. "Forecasting levels of log variables in vector autoregressions," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1108-1115, October.
  3. Francis X. Diebold & Lutz Kilian, 1997. "Measuring predictability: theory and macroeconomic applications," Working Papers 97-23, Federal Reserve Bank of Philadelphia.
  4. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005. "Bootstrap prediction intervals for power-transformed time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
  5. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  6. FERNANDES, Marcelo & GRAMMIG, Joachim, 2001. "A family of autoregressive conditional duration models," CORE Discussion Papers 2001036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. Helmut Lütkepohl & Fang Xu, 2012. "The role of the log transformation in forecasting economic variables," Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
  8. Clements, Michael P. & Hendry, David F., 1997. "An empirical study of seasonal unit roots in forecasting," International Journal of Forecasting, Elsevier, vol. 13(3), pages 341-355, September.
  9. Luetkepohl Helmut & Xu Fang, 2011. "Forecasting Annual Inflation with Seasonal Monthly Data: Using Levels versus Logs of the Underlying Price Index," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-23, February.
  10. R. F. Engle, 1972. "Band Spectrum Regressions," Working papers 96, Massachusetts Institute of Technology (MIT), Department of Economics.
  11. Collins, Sean, 1991. "Prediction Techniques for Box-Cox Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 267-77, July.
  12. Sean Collins, 1991. "Prediction techniques for Box-Cox regression models," Finance and Economics Discussion Series 148, Board of Governors of the Federal Reserve System (U.S.).
  13. Gonçalves, Sílvia & Meddahi, Nour, 2011. "Box-Cox transforms for realized volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 129-144, January.
  14. Osborn, Denise R. & Heravi, Saeed & Birchenhall, C. R., 1999. "Seasonal unit roots and forecasts of two-digit European industrial production," International Journal of Forecasting, Elsevier, vol. 15(1), pages 27-47, February.
  15. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  16. Paul De Bruin & Philip Hans Franses, 1999. "Forecasting power-transformed time series data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(7), pages 807-815.
  17. Freeman, Jade & Modarres, Reza, 2006. "Inverse Box-Cox: The power-normal distribution," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 764-772, April.
  18. Karim Abadir, 1999. "An introduction to hypergeometric functions for economists," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 287-330.
  19. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, 01.
  20. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-58, February.
  21. Nelson, Harold Jr. & Granger, C. W. J., 1979. "Experience with using the Box-Cox transformation when forecasting economic time series," Journal of Econometrics, Elsevier, vol. 10(1), pages 57-69, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:32294. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.