IDEAS home Printed from https://ideas.repec.org/p/uea/ueaeco/2016_07.html
   My bibliography  Save this paper

Model selection with factors and variables

Author

Listed:
  • Jack Fosten

    (University of East Anglia)

Abstract

This paper provides consistent information criteria for the selection of forecasting models which use a subset of both the idiosyncratic and common factor components of a big dataset. This hybrid model approach has been explored by recent empirical studies to relax the strictness of pure factor-augmented model approximations, but no formal model selection procedures have been developed. The main difference to previous factor-augmented model selection procedures is that we must account for estimation error in the idiosyncratic component as well as the factors. Our first contribution shows that this combined estimation error vanishes at a slower rate than in the case of pure factor-augmented models in circumstances in which N is of larger order than sqrt(T), where N and T are the cross-section and time series dimensions respectively. Under these circumstances we show that existing factor-augmented model selection criteria are inconsistent, and the standard BIC is inconsistent regardless of the relationship between N and T. Our main contribution solves this issue by proposing new information criteria which account for the additional source of estimation error, whose properties are explored through a Monte Carlo simulation study. We conclude with an empirical application to long-horizon exchange rate forecasting using a recently proposed model with country-specific idiosyncratic components from a panel of global exchange rates.

Suggested Citation

  • Jack Fosten, 2016. "Model selection with factors and variables," University of East Anglia School of Economics Working Paper Series 2016-07, School of Economics, University of East Anglia, Norwich, UK..
  • Handle: RePEc:uea:ueaeco:2016_07
    as

    Download full text from publisher

    File URL: https://ueaeco.github.io/working-papers/papers/ueaeco/UEA-ECO-16-07.pdf
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
    2. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    3. McCracken, Michael W & Sapp, Stephen G, 2005. "Evaluating the Predictability of Exchange Rates Using Long-Horizon Regressions: Mind Your p's and q's!," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 473-494, June.
    4. Gonçalves, Sílvia & Perron, Benoit, 2014. "Bootstrapping factor-augmented regression models," Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
    5. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    7. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
    8. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    9. Jan J. J. Groen & George Kapetanios, 2013. "Model Selection Criteria for Factor-Augmented Regressions-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(1), pages 37-63, February.
    10. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    11. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    12. Charles Engel & Nelson C. Mark & Kenneth D. West, 2015. "Factor Model Forecasts of Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 32-55, February.
    13. repec:hal:journl:peer-00844811 is not listed on IDEAS
    14. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    15. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    16. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    17. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    18. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
    19. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    20. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    21. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    22. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    23. Christian Brownlees & Eulàlia Nualart & Yucheng Sun, 2018. "Realized networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 986-1006, November.
    24. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    25. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
    26. Antoine A. Djogbenou, 2017. "Model Selection In Factor-augmented Regressions With Estimated Factors," Working Paper 1391, Economics Department, Queen's University.
    27. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-218, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine A. Djogbenou, 2017. "Model Selection In Factor-augmented Regressions With Estimated Factors," Working Paper 1391, Economics Department, Queen's University.

    More about this item

    Keywords

    forecasting; factor model; model selection; information criteria; idiosyncratic;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uea:ueaeco:2016_07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Cushan). General contact details of provider: http://edirc.repec.org/data/esueauk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.