IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v88y2020i6p2547-2574.html
   My bibliography  Save this article

Inference Under Random Limit Bootstrap Measures

Author

Listed:
  • Giuseppe Cavaliere
  • Iliyan Georgiev

Abstract

Asymptotic bootstrap validity is usually understood as consistency of the distribution of a bootstrap statistic, conditional on the data, for the unconditional limit distribution of a statistic of interest. From this perspective, randomness of the limit bootstrap measure is regarded as a failure of the bootstrap. We show that such limiting randomness does not necessarily invalidate bootstrap inference if validity is understood as control over the frequency of correct inferences in large samples. We first establish sufficient conditions for asymptotic bootstrap validity in cases where the unconditional limit distribution of a statistic can be obtained by averaging a (random) limiting bootstrap distribution. Further, we provide results ensuring the asymptotic validity of the bootstrap as a tool for conditional inference, the leading case being that where a bootstrap distribution estimates consistently a conditional (and thus, random) limit distribution of a statistic. We apply our framework to several inference problems in econometrics, including linear models with possibly nonstationary regressors, CUSUM statistics, conditional Kolmogorov–Smirnov specification tests and tests for constancy of parameters in dynamic econometric models.

Suggested Citation

  • Giuseppe Cavaliere & Iliyan Georgiev, 2020. "Inference Under Random Limit Bootstrap Measures," Econometrica, Econometric Society, vol. 88(6), pages 2547-2574, November.
  • Handle: RePEc:wly:emetrp:v:88:y:2020:i:6:p:2547-2574
    DOI: 10.3982/ECTA16557
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA16557
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA16557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matias D. Cattaneo & Michael Jansson & Kenichi Nagasawa, 2020. "Bootstrap‐Based Inference for Cube Root Asymptotics," Econometrica, Econometric Society, vol. 88(5), pages 2203-2219, September.
    2. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    3. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2009. "Heteroskedastic Time Series With A Unit Root," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1228-1276, October.
    4. Hounyo, Ulrich & Gonçalves, Sílvia & Meddahi, Nour, 2017. "Bootstrapping Pre-Averaged Realized Volatility Under Market Microstructure Noise," Econometric Theory, Cambridge University Press, vol. 33(4), pages 791-838, August.
    5. Thomas J. Diciccio & G. Alastair Young, 2008. "Conditional properties of unconditional parametric bootstrap procedures for inference in exponential families," Biometrika, Biometrika Trust, vol. 95(3), pages 747-758.
    6. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2015. "Bootstrap Testing of Hypotheses on Co‐Integration Relations in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 83, pages 813-831, March.
    7. Iliyan Georgiev & David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2019. "A Bootstrap Stationarity Test for Predictive Regression Invalidity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 528-541, July.
    8. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    9. Rudolf Beran, 1997. "Diagnosing Bootstrap Success," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(1), pages 1-24, March.
    10. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    11. Lepage, Raoul & Podgórski, Krzysztof, 1996. "Resampling Permutations in Regression without Second Moments," Journal of Multivariate Analysis, Elsevier, vol. 57(1), pages 119-141, April.
    12. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    13. Giuseppe Cavaliere & Iliyan Georgiev & A. M. Robert Taylor, 2013. "Wild Bootstrap of the Sample Mean in the Infinite Variance Case," Econometric Reviews, Taylor & Francis Journals, vol. 32(2), pages 204-219, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy G. Conley & Sílvia Gonçalves & Min Seong Kim & Benoit Perron, 2023. "Bootstrap inference under cross‐sectional dependence," Quantitative Economics, Econometric Society, vol. 14(2), pages 511-569, May.
    2. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    3. Giuseppe Cavaliere & S'ilvia Gonc{c}alves & Morten {O}rregaard Nielsen & Edoardo Zanelli, 2022. "Bootstrap inference in the presence of bias," Papers 2208.02028, arXiv.org, revised Nov 2023.
    4. Angelini, Giovanni & Cavaliere, Giuseppe & Fanelli, Luca, 2024. "An identification and testing strategy for proxy-SVARs with weak proxies," Journal of Econometrics, Elsevier, vol. 238(2).
    5. Christis Katsouris, 2023. "Limit Theory under Network Dependence and Nonstationarity," Papers 2308.01418, arXiv.org, revised Aug 2023.
    6. Pierre Perron & Yohei Yamamoto & Jing Zhou, 2020. "Testing jointly for structural changes in the error variance and coefficients of a linear regression model," Quantitative Economics, Econometric Society, vol. 11(3), pages 1019-1057, July.
    7. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    8. Kyunghun Kim & Young Hye Bae & Hung Soo Kim, 2024. "Estimating the natural disaster ınter-event time defition (NIETD) to define compound natural disasters in South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8761-8778, July.
    9. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    10. Fukang Zhu & Mengya Liu & Shiqing Ling & Zongwu Cai, 2020. "Testing for Structural Change of Predictive Regression Model to Threshold Predictive Regression Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202021, University of Kansas, Department of Economics, revised Dec 2020.
    11. Giovanni Angelini & Giuseppe Cavaliere & Luca Fanelli, 2022. "Bootstrap inference and diagnostics in state space models: With applications to dynamic macro models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 3-22, January.
    12. Lucio Palazzo & Riccardo Ievoli, 2022. "A Semiparametric Approach to Test for the Presence of INAR: Simulations and Empirical Applications," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    13. Arteche, Josu, 2024. "Bootstrapping long memory time series: Application in low frequency estimators," Econometrics and Statistics, Elsevier, vol. 29(C), pages 1-15.
    14. Christis Katsouris, 2023. "Bootstrapping Nonstationary Autoregressive Processes with Predictive Regression Models," Papers 2307.14463, arXiv.org.
    15. Portnoy, Stephen, 2022. "Canonical quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fukang Zhu & Mengya Liu & Shiqing Ling & Zongwu Cai, 2020. "Testing for Structural Change of Predictive Regression Model to Threshold Predictive Regression Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202021, University of Kansas, Department of Economics, revised Dec 2020.
    2. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    3. Gao, Jiti & Gijbels, Irene & Van Bellegem, Sebastien, 2008. "Nonparametric simultaneous testing for structural breaks," Journal of Econometrics, Elsevier, vol. 143(1), pages 123-142, March.
    4. Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
    5. Travaglini, Guido, 2007. "The U.S. Dynamic Taylor Rule With Multiple Breaks, 1984-2001," MPRA Paper 3419, University Library of Munich, Germany, revised 15 Jun 2007.
    6. Minxian Yang, 2014. "Normality of Posterior Distribution Under Misspecification and Nonsmoothness, and Bayes Factor for Davies' Problem," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 305-336, June.
    7. Boldea, Otilia & Cornea-Madeira, Adriana & Hall, Alastair R., 2019. "Bootstrapping structural change tests," Journal of Econometrics, Elsevier, vol. 213(2), pages 359-397.
    8. Boswijk, H. Peter & Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2016. "Inference on co-integration parameters in heteroskedastic vector autoregressions," Journal of Econometrics, Elsevier, vol. 192(1), pages 64-85.
    9. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2008. "Testing for a change in persistence in the presence of non-stationary volatility," Journal of Econometrics, Elsevier, vol. 147(1), pages 84-98, November.
    10. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2017. "On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 513-534, July.
    11. Giuseppe Cavaliere & A. M. Robert Taylor, 2006. "Testing for a Change in Persistence in the Presence of a Volatility Shift," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 761-781, December.
    12. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
    13. Delgado, Miguel A. & Fiteni, Inmaculada, 2002. "External bootstrap tests for parameter stability," Journal of Econometrics, Elsevier, vol. 109(2), pages 275-303, August.
    14. Ters, Kristyna & Urban, Jörg, 2020. "Estimating unknown arbitrage costs: Evidence from a 3-regime threshold vector error correction model," Journal of Financial Markets, Elsevier, vol. 47(C).
    15. Georgiev, Iliyan & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2018. "Testing for parameter instability in predictive regression models," Journal of Econometrics, Elsevier, vol. 204(1), pages 101-118.
    16. Meitz, Mika & Saikkonen, Pentti, 2021. "Testing for observation-dependent regime switching in mixture autoregressive models," Journal of Econometrics, Elsevier, vol. 222(1), pages 601-624.
    17. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-François, 2000. "Simulation-Based Exact Tests with Unidentified Nuisance Parameters Under the Null Hypothesis: the Case of Jumps Tests in Models with Conditional Heteroskedasticity," Cahiers de recherche 0004, GREEN.
    18. Hansen, Bruce E. & Seo, Byeongseon, 2002. "Testing for two-regime threshold cointegration in vector error-correction models," Journal of Econometrics, Elsevier, vol. 110(2), pages 293-318, October.
    19. Schauten, M.B.J. & van Dijk, D.J.C., 2010. "Corporate Governance and the Cost of Debt of Large European Firms," ERIM Report Series Research in Management ERS-2010-025-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Cavaliere, Giuseppe & Xu, Fang, 2014. "Testing for unit roots in bounded time series," Journal of Econometrics, Elsevier, vol. 178(P2), pages 259-272.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:88:y:2020:i:6:p:2547-2574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.