IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v85y2018i4p2005-2041..html
   My bibliography  Save this article

Volume, Volatility, and Public News Announcements

Author

Listed:
  • Tim Bollerslev
  • Jia Li
  • Yuan Xue

Abstract

We provide new empirical evidence for the way in which financial markets process information. Our results rely critically on high-frequency intraday price and volume data for the S&P 500 equity portfolio and U.S. Treasury bonds, along with new econometric techniques, for making inference on the relationship between trading intensity and spot volatility around public news announcements. Consistent with the predictions derived from a theoretical model in which investors agree to disagree, our estimates for the intraday volume-volatility elasticity around important news announcements are systematically below unity. Our elasticity estimates also decrease significantly with measures of disagreements in beliefs, economic uncertainty, and textual-based sentiment, further highlighting the key role played by differences-of-opinion.

Suggested Citation

  • Tim Bollerslev & Jia Li & Yuan Xue, 2018. "Volume, Volatility, and Public News Announcements," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(4), pages 2005-2041.
  • Handle: RePEc:oup:restud:v:85:y:2018:i:4:p:2005-2041.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/restud/rdy003
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ben S. Bernanke & Kenneth N. Kuttner, 2005. "What Explains the Stock Market's Reaction to Federal Reserve Policy?," Journal of Finance, American Finance Association, vol. 60(3), pages 1221-1257, June.
    2. Wood, Robert A & McInish, Thomas H & Ord, J Keith, 1985. "An Investigation of Transactions Data for NYSE Stocks," Journal of Finance, American Finance Association, vol. 40(3), pages 723-739, July.
    3. Cosmin L. Ilut & Martin Schneider, 2014. "Ambiguous Business Cycles," American Economic Review, American Economic Association, vol. 104(8), pages 2368-2399, August.
    4. Kandel, Eugene & Pearson, Neil D, 1995. "Differential Interpretation of Public Signals and Trade in Speculative Markets," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 831-872, August.
    5. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    6. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    7. Jonathan H. Wright, 2012. "What does Monetary Policy do to Long‐term Interest Rates at the Zero Lower Bound?," Economic Journal, Royal Economic Society, vol. 122(564), pages 447-466, November.
    8. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    9. Sílvia Gonçalves & Nour Meddahi, 2009. "Bootstrapping Realized Volatility," Econometrica, Econometric Society, vol. 77(1), pages 283-306, January.
    10. Daron Acemoglu & Victor Chernozhukov & Muhamet Yildiz, 2006. "Learning and Disagreement in an Uncertain World," NBER Working Papers 12648, National Bureau of Economic Research, Inc.
    11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2003. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," American Economic Review, American Economic Association, vol. 93(1), pages 38-62, March.
    12. Jiang, George J. & Lo, Ingrid & Verdelhan, Adrien, 2011. "Information Shocks, Liquidity Shocks, Jumps, and Price Discovery: Evidence from the U.S. Treasury Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(2), pages 527-551, April.
    13. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    14. Kim, O & Verrecchia, Re, 1991. "Trading Volume And Price Reactions To Public Announcements," Journal of Accounting Research, Wiley Blackwell, vol. 29(2), pages 302-321.
    15. Tim Bollerslev & Viktor Todorov, 2011. "Estimation of Jump Tails," Econometrica, Econometric Society, vol. 79(6), pages 1727-1783, November.
    16. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    17. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    18. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    19. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    20. Boudt, Kris & Petitjean, Mikael, 2014. "Intraday liquidity dynamics and news releases around price jumps: Evidence from the DJIA stocks," Journal of Financial Markets, Elsevier, vol. 17(C), pages 121-149.
    21. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Vega, Clara, 2007. "Real-time price discovery in global stock, bond and foreign exchange markets," Journal of International Economics, Elsevier, vol. 73(2), pages 251-277, November.
    22. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    23. Savor, Pavel & Wilson, Mungo, 2014. "Asset pricing: A tale of two days," Journal of Financial Economics, Elsevier, vol. 113(2), pages 171-201.
    24. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    25. Harris, Lawrence, 1986. "A transaction data study of weekly and intradaily patterns in stock returns," Journal of Financial Economics, Elsevier, vol. 16(1), pages 99-117, May.
    26. Jain, Prem C. & Joh, Gun-Ho, 1988. "The Dependence between Hourly Prices and Trading Volume," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 269-283, September.
    27. Bernile, Gennaro & Hu, Jianfeng & Tang, Yuehua, 2016. "Can information be locked up? Informed trading ahead of macro-news announcements," Journal of Financial Economics, Elsevier, vol. 121(3), pages 496-520.
    28. Julio A. Crego, 2017. "Does Public News Decrease Information Asymmetries? Evidence from the Weekly Petroleum Status Report," Working Papers wp2017_1714, CEMFI.
    29. Kurov, Alexander & Sancetta, Alessio & Strasser, Georg & Wolfe, Marketa Halova, 2019. "Price Drift Before U.S. Macroeconomic News: Private Information about Public Announcements?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(1), pages 449-479, February.
    30. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    31. Julio A. Crego, 2017. "Does Public News Decrease Information Asymmetries? Evidence from the Weekly Petroleum Status Report," Working Papers wp2018_1714, CEMFI.
    32. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    33. Snehal Banerjee & Ilan Kremer, 2010. "Disagreement and Learning: Dynamic Patterns of Trade," Journal of Finance, American Finance Association, vol. 65(4), pages 1269-1302, August.
    34. David O. Lucca & Emanuel Moench, 2015. "The Pre-FOMC Announcement Drift," Journal of Finance, American Finance Association, vol. 70(1), pages 329-371, February.
    35. Savor, Pavel & Wilson, Mungo, 2013. "How Much Do Investors Care About Macroeconomic Risk? Evidence from Scheduled Economic Announcements," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(2), pages 343-375, April.
    36. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    37. Ederington, Louis H & Lee, Jae Ha, 1993. "How Markets Process Information: News Releases and Volatility," Journal of Finance, American Finance Association, vol. 48(4), pages 1161-1191, September.
    38. Van Nieuwerburgh, Stijn & Veldkamp, Laura, 2006. "Learning asymmetries in real business cycles," Journal of Monetary Economics, Elsevier, vol. 53(4), pages 753-772, May.
    39. Jose A. Scheinkman & Wei Xiong, 2003. "Overconfidence and Speculative Bubbles," Journal of Political Economy, University of Chicago Press, vol. 111(6), pages 1183-1219, December.
    40. Harris, Milton & Raviv, Artur, 1993. "Differences of Opinion Make a Horse Race," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 473-506.
    41. Anna Cieslak & Adair Morse & Annette Vissing‐Jorgensen, 2019. "Stock Returns over the FOMC Cycle," Journal of Finance, American Finance Association, vol. 74(5), pages 2201-2248, October.
    42. Dick van Dijk & Robin L. Lumsdaine & Michel van der Wel, 2014. "Market Set-Up in Advance of Federal Reserve Policy Decisions," NBER Working Papers 19814, National Bureau of Economic Research, Inc.
    43. Suzanne S. Lee, 2012. "Jumps and Information Flow in Financial Markets," The Review of Financial Studies, Society for Financial Studies, vol. 25(2), pages 439-479.
    44. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    45. Alain P. Chaboud & Sergey V. Chernenko & Jonathan H. Wright, 2008. "Trading Activity and Macroeconomic Announcements in High-Frequency Exchange Rate Data," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 589-596, 04-05.
    46. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    47. J. Michael Harrison & David M. Kreps, 1978. "Speculative Investor Behavior in a Stock Market with Heterogeneous Expectations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 92(2), pages 323-336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonya Zhu, 2023. "Volume dynamics around FOMC announcements," BIS Working Papers 1079, Bank for International Settlements.
    2. Füss, Roland & Grabellus, Markus & Mager, Ferdinand & Stein, Michael, 2018. "Something in the air: Information density, news surprises, and price jumps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 53(C), pages 50-75.
    3. Tim Bollerslev & Jia Li & Zhipeng Liao, 2021. "Fixed‐k inference for volatility," Quantitative Economics, Econometric Society, vol. 12(4), pages 1053-1084, November.
    4. Bodilsen, Simon & Eriksen, Jonas N. & Grønborg, Niels S., 2021. "Asset pricing and FOMC press conferences," Journal of Banking & Finance, Elsevier, vol. 128(C).
    5. Tim Bollerslev & Jia Li & Leonardo Salim Saker Chaves, 2021. "Generalized Jump Regressions for Local Moments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1015-1025, October.
    6. Bertelsen, Kristoffer Pons & Borup, Daniel & Jakobsen, Johan Stax, 2021. "Stock market volatility and public information flow: A non-linear perspective," Economics Letters, Elsevier, vol. 204(C).
    7. Kalev, Petko S. & Liu, Wai-Man & Pham, Peter K. & Jarnecic, Elvis, 2004. "Public information arrival and volatility of intraday stock returns," Journal of Banking & Finance, Elsevier, vol. 28(6), pages 1441-1467, June.
    8. Johnson, James A. & Medeiros, Marcelo C. & Paye, Bradley S., 2022. "Jumps in stock prices: New insights from old data," Journal of Financial Markets, Elsevier, vol. 60(C).
    9. Koubaa, Yosra & Slim, Skander, 2019. "The relationship between trading activity and stock market volatility: Does the volume threshold matter?," Economic Modelling, Elsevier, vol. 82(C), pages 168-184.
    10. Opschoor, Anne & Taylor, Nick & van der Wel, Michel & van Dijk, Dick, 2014. "Order flow and volatility: An empirical investigation," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 185-201.
    11. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    12. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    13. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    14. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    15. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    16. repec:uts:finphd:39 is not listed on IDEAS
    17. Slim, Skander & Dahmene, Meriam, 2016. "Asymmetric information, volatility components and the volume–volatility relationship for the CAC40 stocks," Global Finance Journal, Elsevier, vol. 29(C), pages 70-84.
    18. Rui Guo & Dun Jia & Xi Sun, 2023. "Information Acquisition, Uncertainty Reduction, and Pre-Announcement Premium in China," Review of Finance, European Finance Association, vol. 27(3), pages 1077-1118.
    19. Tribhuvan N. Puri & George C. Philippatos, 2008. "Asymmetric Volume‐Return Relation and Concentrated Trading in LIFFE Futures," European Financial Management, European Financial Management Association, vol. 14(3), pages 528-563, June.
    20. Blankespoor, Elizabeth & deHaan, Ed & Marinovic, Iván, 2020. "Disclosure processing costs, investors’ information choice, and equity market outcomes: A review," Journal of Accounting and Economics, Elsevier, vol. 70(2).
    21. Takatoshi Ito & Richard K. Lyons & Michael T. Melvin, 1996. "Is There Private Information in the FX Market? The Tokyo Experiment," Working Papers _005, University of California at Berkeley, Haas School of Business.

    More about this item

    Keywords

    Differences-of-opinion; High-frequency data; Jumps; Macroeconomic news announcements; Trading volume; Stochastic volatility; Economic uncertainty; Textual sentiment;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:85:y:2018:i:4:p:2005-2041.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.