IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v197y2020ics0165176520304018.html
   My bibliography  Save this article

Adaptive estimation of AR∞ models with time-varying variances

Author

Listed:
  • Zhang, Erhua
  • Wu, Jilin

Abstract

This paper considers adaptive estimation of AR∞ models under time-varying variances of unknown forms. We utilize the sieve method to approximate the autoregressive model of infinite order, and then develop kernel-based estimators of the residual variances and associated adaptive least squares (ALS) estimators of the autoregressive coefficients. We prove the ALS estimator has the same efficiency as its infeasible counterpart. Simulation results show the adaptive procedure can help achieve efficiency gains in finite samples.

Suggested Citation

  • Zhang, Erhua & Wu, Jilin, 2020. "Adaptive estimation of AR∞ models with time-varying variances," Economics Letters, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:ecolet:v:197:y:2020:i:c:s0165176520304018
    DOI: 10.1016/j.econlet.2020.109641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176520304018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2020.109641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    2. Harris, David & Kew, Hsein, 2017. "Adaptive Long Memory Testing Under Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 33(3), pages 755-778, June.
    3. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    4. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
    5. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    6. Peter C. B. Phillips & Ke‐Li Xu, 2006. "Inference in Autoregression under Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 289-308, March.
    7. David I. Harvey & Stephen J. Leybourne & Yang Zu, 2019. "Testing explosive bubbles with time-varying volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1131-1151, November.
    8. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    9. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
    10. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
    11. H. Peter Boswijk & Yang Zu, 2018. "Adaptive wild bootstrap tests for a unit root with non‐stationary volatility," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 87-113, June.
    12. Hansen, Bruce E, 1995. "Regression with Nonstationary Volatility," Econometrica, Econometric Society, vol. 63(5), pages 1113-1132, September.
    13. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    14. A. C. Harvey & P. M. Robinson, 1988. "Efficient Estimation Of Nonstationary Time Series Regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(3), pages 201-214, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, Eunju & Hong, Won-Tak, 2021. "A multivariate HAR-RV model with heteroscedastic errors and its WLS estimation," Economics Letters, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sam Astill & David I Harvey & Stephen J Leybourne & A M Robert Taylor & Yang Zu, 2023. "CUSUM-Based Monitoring for Explosive Episodes in Financial Data in the Presence of Time-Varying Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 187-227.
    2. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    3. Ke-Li Xu & Jui-Chung Yang, 2015. "Towards Uniformly Efficient Trend Estimation Under Weak/Strong Correlation and Non-stationary Volatility," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 63-86, March.
    4. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    5. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    6. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.
    7. H. Peter Boswijk & Yang Zu, 2022. "Adaptive Testing for Cointegration With Nonstationary Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 744-755, April.
    8. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    9. Harris, David & Kew, Hsein & Taylor, A.M. Robert, 2020. "Level shift estimation in the presence of non-stationary volatility with an application to the unit root testing problem," Journal of Econometrics, Elsevier, vol. 219(2), pages 354-388.
    10. Nikolaos Kourogenis, 2015. "Polynomial Trends, Nonstationary Volatility and the Eicker-White Asymptotic Variance Estimator," Economics Bulletin, AccessEcon, vol. 35(3), pages 1675-1680.
    11. Mohitosh Kejriwal & Xuewen Yu & Pierre Perron, 2020. "Bootstrap procedures for detecting multiple persistence shifts in heteroskedastic time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 676-690, September.
    12. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).
    13. Matei Demetrescu & Christoph Hanck & Robinson Kruse, 2016. "Fixed-b Inference in the Presence of Time-Varying Volatility," CREATES Research Papers 2016-01, Department of Economics and Business Economics, Aarhus University.
    14. Amélie Charles & Olivier Darné & Laurent Ferrara, 2018. "Does The Great Recession Imply The End Of The Great Moderation? International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 745-760, April.
    15. Kostyrka, Andreï & Malakhov, Dmitry, 2021. "Was there ever a shift: Empirical analysis of structural-shift tests for return volatility," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 61, pages 110-139.
    16. WenShwo Fang & Stephen M. Miller, 2014. "Output Growth and its Volatility: The Gold Standard through the Great Moderation," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.
    17. Brendan K. Beare, 2018. "Unit Root Testing with Unstable Volatility," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 816-835, November.
    18. Arago-Manzana, Vicent & Fernandez-Izquierdo, Maria Angeles, 2007. "Influence of structural changes in transmission of information between stock markets: A European empirical study," Journal of Multinational Financial Management, Elsevier, vol. 17(2), pages 112-124, April.
    19. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.
    20. Xu, Ke-Li, 2013. "Power monotonicity in detecting volatility levels change," Economics Letters, Elsevier, vol. 121(1), pages 64-69.

    More about this item

    Keywords

    Time-varying variances; Sieve approximation; Adaptive estimation; Lag selection;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:197:y:2020:i:c:s0165176520304018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.