IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v203y2021ics0165176521001324.html
   My bibliography  Save this article

A multivariate HAR-RV model with heteroscedastic errors and its WLS estimation

Author

Listed:
  • Hwang, Eunju
  • Hong, Won-Tak

Abstract

This work considers a multivariate heterogeneous autoregressive-realized volatility (HAR-RV) model in the presence of heteroscedasticity and aims to analyze realized volatilities of multiple assets that possess non-standard features, such as non-Gaussianity, time varying volatility and long-memory dependence. For capturing the long-memory, a HAR-RV model is employed, while for a heavy-tailed distribution, a GARCH process is adopted on the noise term. To estimate coefficients of the HAR-RV-GARCH model, we suggest weighted least squares estimator (WLSE) based on an observed weighting scheme and prove its asymptotic normality. Simulation results show a good performance on the WLSE. The multivariate HAR-RV-GARCH model fitted by the WLSE is illustrated with an application to realized volatilities of multiple financial data.

Suggested Citation

  • Hwang, Eunju & Hong, Won-Tak, 2021. "A multivariate HAR-RV model with heteroscedastic errors and its WLS estimation," Economics Letters, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:ecolet:v:203:y:2021:i:c:s0165176521001324
    DOI: 10.1016/j.econlet.2021.109855
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176521001324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2021.109855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    2. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    3. Cipollini, Fabrizio & Gallo, Giampiero M. & Otranto, Edoardo, 2021. "Realized volatility forecasting: Robustness to measurement errors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 44-57.
    4. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    5. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
    6. Zhang, Erhua & Wu, Jilin, 2020. "Adaptive estimation of AR∞ models with time-varying variances," Economics Letters, Elsevier, vol. 197(C).
    7. Zhang, Rong-Mao & Sin, Chor-yiu (CY) & Ling, Shiqing, 2015. "On functional limits of short- and long-memory linear processes with GARCH(1,1) noises," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 482-512.
    8. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    9. Nicholas Taylor, 2015. "Realized volatility forecasting in an international context," Applied Economics Letters, Taylor & Francis Journals, vol. 22(6), pages 503-509, April.
    10. Zhang, Rongmao & Ling, Shiqing, 2015. "Asymptotic Inference For Ar Models With Heavy-Tailed G-Garch Noises," Econometric Theory, Cambridge University Press, vol. 31(4), pages 880-890, August.
    11. František Čech & Jozef Baruník, 2017. "On the Modelling and Forecasting of Multivariate Realized Volatility: Generalized Heterogeneous Autoregressive (GHAR) Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(2), pages 181-206, March.
    12. Chan, Ngai Hang & Zhang, Rong-Mao, 2013. "Limit theory of quadratic forms of long-memory linear processes with heavy-tailed GARCH innovations," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 18-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan, 2022. "Dynamic volatility connectedness between thermal coal futures and major cryptocurrencies: Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    2. Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
    3. Won-Tak Hong & Jiwon Lee & Eunju Hwang, 2020. "A Note on the Asymptotic Normality Theory of the Least Squares Estimates in Multivariate HAR-RV Models," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    4. Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan & Vo, Xuan Vinh, 2023. "Portfolio diversification during the COVID-19 pandemic: Do vaccinations matter?," Journal of Financial Stability, Elsevier, vol. 65(C).
    5. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
    6. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
    7. Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
    8. Clements, Adam & Preve, Daniel P.A., 2021. "A Practical Guide to harnessing the HAR volatility model," Journal of Banking & Finance, Elsevier, vol. 133(C).
    9. Fabrizio Cipollini & Giampiero M. Gallo, 2021. "Multiplicative Error Models: 20 years on," Papers 2107.05923, arXiv.org.
    10. Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2017. "A vector heterogeneous autoregressive index model for realized volatility measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 337-344.
    11. Luo, Jiawen & Wang, Shengquan, 2019. "The asymmetric high-frequency volatility transmission across international stock markets," Finance Research Letters, Elsevier, vol. 31(C), pages 104-109.
    12. Souček, Michael & Todorova, Neda, 2013. "Realized volatility transmission between crude oil and equity futures markets: A multivariate HAR approach," Energy Economics, Elsevier, vol. 40(C), pages 586-597.
    13. Todorova, Neda & Worthington, Andrew & Souček, Michael, 2014. "Realized volatility spillovers in the non-ferrous metal futures market," Resources Policy, Elsevier, vol. 39(C), pages 21-31.
    14. Todorova, Neda, 2015. "The course of realized volatility in the LME non-ferrous metal market," Economic Modelling, Elsevier, vol. 51(C), pages 1-12.
    15. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
    16. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    17. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
    18. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    19. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    20. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:203:y:2021:i:c:s0165176521001324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.