IDEAS home Printed from https://ideas.repec.org/p/fth/ehecge/2001.09.html
   My bibliography  Save this paper

A fast Subsampling Method for Nonlinear Dynamic Models

Author

Listed:
  • Hong, H.
  • Scaillet, O.
  • Tamer, E.

Abstract

We Highlight a fast subsampling method that can be used to provide valid inference in nonlinear dynamic econometric models.

Suggested Citation

  • Hong, H. & Scaillet, O. & Tamer, E., 2001. "A fast Subsampling Method for Nonlinear Dynamic Models," Papers 2001.09, Ecole des Hautes Etudes Commerciales, Universite de Geneve-.
  • Handle: RePEc:fth:ehecge:2001.09
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
    2. Romano, Joseph P & Wolf, Michael, 2001. "Subsampling Intervals in Autoregressive Models with Linear Time Trend," Econometrica, Econometric Society, vol. 69(5), pages 1283-1314, September.
    3. Davidson, Russell & MacKinnon, James G, 1999. "Bootstrap Testing in Nonlinear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 487-508, May.
    4. White, Halbert, 1983. "Corrigendum [Maximum Likelihood Estimation of Misspecified Models]," Econometrica, Econometric Society, vol. 51(2), pages 513-513, March.
    5. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    6. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
    7. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    8. Whitney Newey & Kenneth West, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    9. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    10. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    11. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521477444, September.
    12. Goncalves, Silvia & White, Halbert, 2000. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," University of California at San Diego, Economics Working Paper Series qt1bj657ff, Department of Economics, UC San Diego.
    13. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    2. Wang, Bin & Zheng, Xu, 2022. "Testing for the presence of jump components in jump diffusion models," Journal of Econometrics, Elsevier, vol. 230(2), pages 483-509.
    3. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    4. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    5. Aristide Houndetoungan & Abdoul Haki Maoude, 2024. "Inference for Two-Stage Extremum Estimators," Papers 2402.05030, arXiv.org, revised Nov 2024.
    6. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    7. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
    8. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Tao Zou & Xian Li & Xuan Liang & Hansheng Wang, 2021. "On the Subbagging Estimation for Massive Data," Papers 2103.00631, arXiv.org.
    10. Aristide Houndetoungan & Abdoul Haki Maoude, 2024. "Inference for Two-Stage Extremum Estimators," THEMA Working Papers 2024-01, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    11. Lorenzo Camponovo & Olivier Scaillet & Fabio Trojani, 2017. "Comment on: Nonparametric Tail Risk, Stock Returns, and the Macroeconomy," Journal of Financial Econometrics, Oxford University Press, vol. 15(3), pages 377-387.
    12. Jean-Jacques Forneron, 2022. "Estimation and Inference by Stochastic Optimization," Papers 2205.03254, arXiv.org.
    13. Forneron, Jean-Jacques, 2024. "Estimation and inference by stochastic optimization," Journal of Econometrics, Elsevier, vol. 238(2).
    14. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    2. Bravo, Francesco & Crudu, Federico, 2012. "Efficient bootstrap with weakly dependent processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3444-3458.
    3. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    4. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
    5. Gonçalves, Sílvia & White, Halbert, 2002. "The Bootstrap Of The Mean For Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1367-1384, December.
    6. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    7. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    8. Corradi, Valentina & Swanson, Norman R., 2006. "Bootstrap conditional distribution tests in the presence of dynamic misspecification," Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
    9. Lavergne, Pascal & Bertail, Patrice, 2020. "Bootstrapping Quasi Likelihood Ratio Tests under Misspecification," TSE Working Papers 20-1102, Toulouse School of Economics (TSE).
    10. Valentina Corradi & Norman R. Swanson, 2007. "Nonparametric Bootstrap Procedures For Predictive Inference Based On Recursive Estimation Schemes," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 67-109, February.
    11. Lutz Kilian & Atsushi Inoue, 2004. "Bagging Time Series Models," Econometric Society 2004 North American Summer Meetings 110, Econometric Society.
    12. Valentina Corradi & Norman Swanson, 2004. "Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model Selection," Departmental Working Papers 200418, Rutgers University, Department of Economics.
    13. Paulo M.D.C. Parente & Richard J. Smith, 2018. "Generalised Empirical Likelihood Kernel Block Bootstrapping," Working Papers REM 2018/55, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    14. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
    15. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    16. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
    17. Armstrong, Timothy B. & Bertanha, Marinho & Hong, Han, 2014. "A fast resample method for parametric and semiparametric models," Journal of Econometrics, Elsevier, vol. 179(2), pages 128-133.
    18. Valentina Corradi & Norman Swanson, 2003. "The Block Bootstrap for Parameter Estimation Error In Recursive Estimation Schemes, With Applications to Predictive Evaluation," Departmental Working Papers 200313, Rutgers University, Department of Economics.
    19. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    20. Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023. "Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:ehecge:2001.09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/depgech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.