IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v167y2012i1p197-210.html
   My bibliography  Save this article

Robust subsampling

Author

Listed:
  • Camponovo, Lorenzo
  • Scaillet, Olivier
  • Trojani, Fabio

Abstract

We characterize the robustness of subsampling procedures by deriving a formula for the breakdown point of subsampling quantiles. This breakdown point can be very low for moderate subsampling block sizes, which implies the fragility of subsampling procedures, even when they are applied to robust statistics. This instability arises also for data driven block size selection procedures minimizing the minimum confidence interval volatility index, but can be mitigated if a more robust calibration method can be applied instead. To overcome these robustness problems, we introduce a consistent robust subsampling procedure for M-estimators and derive explicit subsampling quantile breakdown point characterizations for MM-estimators in the linear regression model. Monte Carlo simulations in two settings where the bootstrap fails show the accuracy and robustness of the robust subsampling relative to the subsampling.

Suggested Citation

  • Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
  • Handle: RePEc:eee:econom:v:167:y:2012:i:1:p:197-210
    DOI: 10.1016/j.jeconom.2011.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407611002594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2011.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    2. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    3. Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
    4. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
    5. Mancini, Loriano & Ronchetti, Elvezio & Trojani, Fabio, 2005. "Optimal Conditionally Unbiased Bounded-Influence Inference in Dynamic Location and Scale Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 628-641, June.
    6. Romano, Joseph P & Wolf, Michael, 2001. "Subsampling Intervals in Autoregressive Models with Linear Time Trend," Econometrica, Econometric Society, vol. 69(5), pages 1283-1314, September.
    7. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    8. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    9. La Vecchia, Davide & Trojani, Fabio, 2010. "Infinitesimal Robustness for Diffusions," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 703-712.
    10. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    11. Frank A. Cowell, 2008. "Income Distribution and Inequality," Chapters, in: John B. Davis & Wilfred Dolfsma (ed.), The Elgar Companion to Social Economics, chapter 13, Edward Elgar Publishing.
    12. Matías Salibián-Barrera & Stefan Aelst & Gert Willems, 2008. "Fast and robust bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 41-71, February.
    13. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    14. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP," Econometric Theory, Cambridge University Press, vol. 26(2), pages 426-468, April.
    15. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, vol. 158(2), pages 285-305, October.
    16. Tae-Hwan Kim, 2005. "Asymptotic and Bayesian Confidence Intervals for Sharpe-Style Weights," Journal of Financial Econometrics, Oxford University Press, vol. 3(3), pages 315-343.
    17. Salibian-Barrera, Matias & Van Aelst, Stefan & Willems, Gert, 2006. "Principal Components Analysis Based on Multivariate MM Estimators With Fast and Robust Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1198-1211, September.
    18. Hong, H. & Scaillet, O., 2006. "A fast subsampling method for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 133(2), pages 557-578, August.
    19. Gonzalo, Jesus & Wolf, Michael, 2005. "Subsampling inference in threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 127(2), pages 201-224, August.
    20. Salibian-Barrera, Matias, 2006. "Bootstrapping MM-estimators for linear regression with fixed designs," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1287-1297, July.
    21. Ortelli, Claudio & Trojani, Fabio, 2005. "Robust efficient method of moments," Journal of Econometrics, Elsevier, vol. 128(1), pages 69-97, September.
    22. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Incorrect asymptotic size of subsampling procedures based on post-consistent model selection estimators," Journal of Econometrics, Elsevier, vol. 152(1), pages 19-27, September.
    23. Lee, Stephen M.S. & Pun, M.C., 2006. "On m out of n Bootstrapping for Nonstandard M-Estimation With Nuisance Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1185-1197, September.
    24. Datta, Somnath, 1995. "On a modified bootstrap for certain asymptotically nonnormal statistics," Statistics & Probability Letters, Elsevier, vol. 24(2), pages 91-98, August.
    25. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    26. Davidson, Russell & MacKinnon, James G, 1999. "Bootstrap Testing in Nonlinear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 487-508, May.
    27. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    28. Donald W. K. Andrews & Patrik Guggenberger, 2009. "Hybrid and Size-Corrected Subsampling Methods," Econometrica, Econometric Society, vol. 77(3), pages 721-762, May.
    29. Anna Mikusheva, 2007. "Uniform Inference in Autoregressive Models," Econometrica, Econometric Society, vol. 75(5), pages 1411-1452, September.
    30. Matias Salibian-Barrera, 2006. "The Asymptotics of MM-Estimators for Linear Regression with Fixed Designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 63(3), pages 283-294, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    2. Loriano Mancini & Fabio Trojani, 2011. "Robust Value at Risk Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 281-313, Spring.
    3. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    4. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
    5. Lorenzo Camponovo & Taisuke Otsu, 2015. "Robustness of Bootstrap in Instrumental Variable Regression," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 352-393, March.
    6. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
    2. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    3. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    4. Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.
    5. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    6. Chen, Qihui & Fang, Zheng, 2019. "Inference on functionals under first order degeneracy," Journal of Econometrics, Elsevier, vol. 210(2), pages 459-481.
    7. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    8. La Vecchia, Davide & Camponovo, Lorenzo & Ferrari, Davide, 2015. "Robust heart rate variability analysis by generalized entropy minimization," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 137-151.
    9. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics and Public Policy Working Papers 2020-05, University of Adelaide, School of Economics and Public Policy.
    10. Gagliardini, Patrick & Trojani, Fabio & Urga, Giovanni, 2005. "Robust GMM tests for structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 139-182.
    11. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    12. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Incorrect asymptotic size of subsampling procedures based on post-consistent model selection estimators," Journal of Econometrics, Elsevier, vol. 152(1), pages 19-27, September.
    13. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    14. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    15. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
    16. Gregory Fletcher Cox, 2024. "A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality," Papers 2409.09962, arXiv.org.
    17. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    18. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Uniform Inference after Pretesting for Exogeneity with Heteroskedastic Data," MPRA Paper 106408, University Library of Munich, Germany.
    19. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    20. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.

    More about this item

    Keywords

    Subsampling; Bootstrap; Breakdown point; Robustness;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:167:y:2012:i:1:p:197-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.