IDEAS home Printed from https://ideas.repec.org/p/usg/dp2005/2005-01.html
   My bibliography  Save this paper

Optimal Conditionally Unbiased Bounded-Influence Inference in Dynamic Location and Scale Models

Author

Listed:
  • Loriano Mancini
  • Elvezio Ronchetti
  • Fabio Trojani

Abstract

This paper studies the local robustness of estimators and tests for the conditional location and scale parameters in a strictly stationary time series model. We first derive optimal bounded-influence estimators for such settings under a conditionally Gaussian reference model. Based on these results, optimal bounded-influence versions of the classical likelihood-based tests for parametric hypotheses are obtained. We propose a feasible and efficient algorithm for the computation of our robust estimators, which makes use of analytical Laplace approximations to estimate the auxiliary recentering vectors ensuring Fisher consistency in robust estimation. This strongly reduces the necessary computation time by avoiding the simulation of multidimensional integrals, a task that has typically to be addressed in the robust estimation of nonlinear models for time series. In some Monte Carlo simulations of an AR(1)-ARCH(1) process we show that our robust procedures maintain a very high efficiency under ideal model conditions and at the same time perform very satisfactorily under several forms of departure from conditional normality. On the contrary, classical Pseudo Maximum Likelihood inference procedures are found to be highly inefficient under such local model misspecifications. These patterns are confirmed by an application to robust testing for ARCH.

Suggested Citation

  • Loriano Mancini & Elvezio Ronchetti & Fabio Trojani, 2005. "Optimal Conditionally Unbiased Bounded-Influence Inference in Dynamic Location and Scale Models," University of St. Gallen Department of Economics working paper series 2005 2005-01, Department of Economics, University of St. Gallen.
  • Handle: RePEc:usg:dp2005:2005-01
    as

    Download full text from publisher

    File URL: http://ux-tauri.unisg.ch/RePEc/usg/dp2005/DP-01_Tr.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Krishnakumar, J. & Ronchetti, E., 1997. "Robust estimators for simultaneous equations models," Journal of Econometrics, Elsevier, vol. 78(2), pages 295-314, June.
    4. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    5. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. La Vecchia, Davide & Trojani, Fabio, 2010. "Infinitesimal Robustness for Diffusions," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 703-712.
    2. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
    3. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
    4. La Vecchia, Davide & Camponovo, Lorenzo & Ferrari, Davide, 2015. "Robust heart rate variability analysis by generalized entropy minimization," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 137-151.
    5. Ortelli, Claudio & Trojani, Fabio, 2005. "Robust efficient method of moments," Journal of Econometrics, Elsevier, vol. 128(1), pages 69-97, September.
    6. Hill, Jonathan B., 2015. "Robust Generalized Empirical Likelihood for heavy tailed autoregressions with conditionally heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 131-152.
    7. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
    8. Xiaofei Xu & Yan Liu & Masanobu Taniguchi, 2024. "Second-order robustness for time series inference," Statistical Inference for Stochastic Processes, Springer, vol. 27(1), pages 213-225, April.
    9. Pierre‐Yves Deléamont & Elvezio Ronchetti, 2022. "Robust inference with censored survival data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1496-1533, December.
    10. Loriano Mancini & Fabio Trojani, 2011. "Robust Value at Risk Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 281-313, Spring.
    11. Hotta, Luiz & Trucíos, Carlos, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    13. Fabio Trojani, 2007. "Accurate Short-Term Yield Curve Forecasting using Functional Gradient Descent," Journal of Financial Econometrics, Oxford University Press, vol. 5(4), pages 591-623, Fall.
    14. Elvezio Ronchetti, 2016. "Discussion of the Paper “Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models” by Johansen & Nielsen," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 368-370, June.
    15. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    16. Boudt, Kris & Croux, Christophe, 2010. "Robust M-estimation of multivariate GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2459-2469, November.
    17. Sonja Rieder, 2012. "Robust parameter estimation for the Ornstein–Uhlenbeck process," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 411-436, November.
    18. Trojani, Fabio & Wiehenkamp, Christian & Wrampelmeyer, Jan, 2014. "Ambiguity and Reality," Working Papers on Finance 1418, University of St. Gallen, School of Finance.
    19. Tadeusz Bednarski, 2010. "Fréchet differentiability in statistical inference for time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 517-528, November.
    20. Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.
    21. Bellio, Ruggero, 2007. "Algorithms for bounded-influence estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2531-2541, February.
    22. Marc Hallin & Davide La Vecchia, 2014. "Semiparametrically Efficient R-Estimation for Dynamic Location-Scale Models," Working Papers ECARES ECARES 2014-45, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, July.
    2. Chikashi Tsuji, 2016. "Does the fear gauge predict downside risk more accurately than econometric models? Evidence from the US stock market," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1220711-122, December.
    3. repec:wyi:journl:002087 is not listed on IDEAS
    4. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    5. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    6. Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Lukáš Frýd, 2018. "Asymetrie během finančních krizí: asymetrická volatilita převyšuje důležitost asymetrické korelace [Asymmetry of Financial Time Series During the Financial Crisis: Asymmetric Volatility Outperforms," Politická ekonomie, Prague University of Economics and Business, vol. 2018(3), pages 302-329.
    8. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 208-230, Spring.
    9. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    10. Hafner, Christian M. & Herwartz, Helmut, 1999. "Time-varying market price of risk in the CAPM: Approaches, empirical evidence and implications," SFB 373 Discussion Papers 1999,22, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Bernd Hayo & Matthias Neuenkirch, 2012. "Domestic Or U.S. News: What Drives Canadian Financial Markets?," Economic Inquiry, Western Economic Association International, vol. 50(3), pages 690-706, July.
    12. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    13. Hematizadeh, Roksana & Tajaddini, Reza, 2024. "A state-dependent international CAPM for partially integrated markets: Using local and US risk factors," Global Finance Journal, Elsevier, vol. 62(C).
    14. Sheriffdeen A. Tella & Olumuyiwa G. Yinusa & Ayinde Taofeek Olusola & Saban Celik, 2011. "Global Economic Crisis And Stock Markets Efficiency: Evidence From Selected Africa Countries," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 25(1), pages 139-169.
    15. Steeley, James M., 2006. "Volatility transmission between stock and bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(1), pages 71-86, February.
    16. Ioannis A. Tampakoudis & Demetres N. Subeniotis & Ioannis G. Kroustalis, 2012. "Modelling volatility during the current financial crisis: an empirical analysis of the US and the UK stock markets," International Journal of Trade and Global Markets, Inderscience Enterprises Ltd, vol. 5(3/4), pages 171-194.
    17. Marco Mele, 2014. "Open-End Fund Performance Persistence: A Study on KC Libra Fund," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 3(1), pages 1-8.
    18. Tiwari, Aviral Kumar & Sahadudheen, I., 2015. "Understanding the nexus between oil and gold," Resources Policy, Elsevier, vol. 46(P2), pages 85-91.
    19. Madhusudan Karmakar, 2007. "Asymmetric Volatility and Risk-return Relationship in the Indian Stock Market," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 8(1), pages 99-116, January.
    20. Bekaert, Geert & Harvey, Campbell R., 1997. "Emerging equity market volatility," Journal of Financial Economics, Elsevier, vol. 43(1), pages 29-77, January.
    21. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:dp2005:2005-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joerg Baumberger The email address of this maintainer does not seem to be valid anymore. Please ask Joerg Baumberger to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/vwasgch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.