IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v34y2015i3p352-393.html

Robustness of Bootstrap in Instrumental Variable Regression

Author

Listed:
  • Lorenzo Camponovo
  • Taisuke Otsu

Abstract

This paper studies robustness of bootstrap inference methods for instrumental variable (IV) regression models. We consider test statistics for parameter hypotheses based on the IV estimator and generalized method of trimmed moments (GMTM) estimator introduced by Č�žek (2008, 2009), and compare the pairs and implied probability bootstrap approximations for these statistics by applying the finite sample breakdown point theory. In particular, we study limiting behaviors of the bootstrap quantiles when the values of outliers diverge to infinity but the sample size is held fixed. The outliers are defined as anomalous observations that can arbitrarily change the value of the statistic of interest. We analyze both just- and overidentified cases and discuss implications of the breakdown point analysis to the size and power properties of bootstrap tests. We conclude that the implied probability bootstrap test using the statistic based on the GMTM estimator shows desirable robustness properties. Simulation studies endorse this conclusion. An empirical example based on Romer's (1993) study on the effect of openness of countries to inflation rates is presented. Several extensions including the analysis for the residual bootstrap are provided.

Suggested Citation

  • Lorenzo Camponovo & Taisuke Otsu, 2015. "Robustness of Bootstrap in Instrumental Variable Regression," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 352-393, March.
  • Handle: RePEc:taf:emetrv:v:34:y:2015:i:3:p:352-393
    DOI: 10.1080/07474938.2014.944803
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2014.944803
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2014.944803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Rachel Bocquet & Christian Le Bas & Caroline Mothe & Nicolas Poussing, 2017. "CSR, Innovation, and Firm Performance in Sluggish Growth Contexts: A Firm-Level Empirical Analysis," Journal of Business Ethics, Springer, vol. 146(1), pages 241-254, November.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:34:y:2015:i:3:p:352-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.