IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v35y2014i4p299-321.html

A Hybrid Bootstrap Approach To Unit Root Tests

Author

Listed:
  • Guodong Li
  • Chenlei Leng
  • Chih-Ling Tsai

Abstract

type="main" xml:id="jtsa12019-abs-0001"> This article proposes a hybrid bootstrap approach to approximate the augmented Dickey–Fuller test by perturbing both the residual sequence and the minimand of the objective function. Since innovations can be dependent, this allows the inclusion of conditional heteroscedasticity models. The new bootstrap method is also applied to least absolute deviation-based unit root test statistics, which are efficient in handling heavy-tailed time-series data. The asymptotic distributions of resulting bootstrap tests are presented, and Monte Carlo studies demonstrate the usefulness of the proposed tests.

Suggested Citation

  • Guodong Li & Chenlei Leng & Chih-Ling Tsai, 2014. "A Hybrid Bootstrap Approach To Unit Root Tests," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 299-321, July.
  • Handle: RePEc:bla:jtsera:v:35:y:2014:i:4:p:299-321
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12019
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Franz C. Palm & Stephan Smeekes & Jean‐Pierre Urbain, 2008. "Bootstrap Unit‐Root Tests: Comparison and Extensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 371-401, March.
    2. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2009. "Heteroskedastic Time Series With A Unit Root," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1228-1276, October.
    3. Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, July.
    4. Herce, Miguel A., 1996. "Asymptotic Theory of LAD Estimation in a Unit Root Process with Finite Variance Errors," Econometric Theory, Cambridge University Press, vol. 12(1), pages 129-153, March.
    5. Paparoditis, Efstathios & Politis, Dimitris N., 2005. "Bootstrapping Unit Root Tests for Autoregressive Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 545-553, June.
    6. Li, Guodong & Li, Wai Keung, 2009. "Least Absolute Deviation Estimation For Unit Root Processes With Garch Errors," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1208-1227, October.
    7. Guodong Li & Wai Keung Li, 2008. "Least absolute deviation estimation for fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity," Biometrika, Biometrika Trust, vol. 95(2), pages 399-414.
    8. Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(2), pages 331-346, February.
    9. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    10. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    11. Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
    12. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    13. Yoosoon Chang & Joon Park, 2002. "On The Asymptotics Of Adf Tests For Unit Roots," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 431-447.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Efstathios Paparoditis & Dimitris N. Politis, 2003. "Residual-Based Block Bootstrap for Unit Root Testing," Econometrica, Econometric Society, vol. 71(3), pages 813-855, May.
    16. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
    17. Ling, Shiqing & Li, W.K., 2003. "Asymptotic Inference For Unit Root Processes With Garch(1,1) Errors," Econometric Theory, Cambridge University Press, vol. 19(4), pages 541-564, August.
    18. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    19. Seo, Byeongseon, 1999. "Distribution theory for unit root tests with conditional heteroskedasticity1," Journal of Econometrics, Elsevier, vol. 91(1), pages 113-144, July.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Muyi & Zhang, Yanfen, 2022. "Bootstrapping multivariate portmanteau tests for vector autoregressive models with weak assumptions on errors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    2. Wang, Xuqin & Li, Muyi, 2023. "Bootstrapping the transformed goodness-of-fit test on heavy-tailed GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    3. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    4. Guo, Shaojun & Li, Dong & Li, Muyi, 2019. "Strict stationarity testing and GLAD estimation of double autoregressive models," Journal of Econometrics, Elsevier, vol. 211(2), pages 319-337.
    5. Good, Clara, 2016. "Environmental impact assessments of hybrid photovoltaic–thermal (PV/T) systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 234-239.
    6. Huang, Feiqing & Lu, Kexin & Zheng, Yao & Li, Guodong, 2025. "Supervised factor modeling for high-dimensional linear time series," Journal of Econometrics, Elsevier, vol. 249(PB).
    7. Zhenming Zhang & Shishun Zhao & Jianhua Cheng & Jiamin Li, 2025. "Conditional quantile estimation for GARCH model based on mixed-frequency data," Statistical Papers, Springer, vol. 66(4), pages 1-56, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narayan, Paresh Kumar & Liu, Ruipeng & Westerlund, Joakim, 2016. "A GARCH model for testing market efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 121-138.
    2. Smeekes, Stephan & Taylor, A.M. Robert, 2012. "Bootstrap Union Tests For Unit Roots In The Presence Of Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 28(2), pages 422-456, April.
    3. Phillips, Peter C.B., 2010. "Bootstrapping I(1) data," Journal of Econometrics, Elsevier, vol. 158(2), pages 280-284, October.
    4. Stephan Smeekes, 2013. "Detrending Bootstrap Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 869-891, November.
    5. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, The University of Osaka.
    6. Martin C. Arnold & Thilo Reinschlussel, 2024. "Bootstrap Adaptive Lasso Solution Path Unit Root Tests," Papers 2409.07859, arXiv.org.
    7. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    8. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    9. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    10. Sevan Gulesserian & Mohitosh Kejriwal, 2014. "On the power of bootstrap tests for stationarity: a Monte Carlo comparison," Empirical Economics, Springer, vol. 46(3), pages 973-998, May.
    11. So, Beong Soo & Shin, Dong Wan, 2001. "An invariant sign test for random walks based on recursive median adjustment," Journal of Econometrics, Elsevier, vol. 102(2), pages 197-229, June.
    12. Xuedong Wu & Jeffrey H. Dorfman & Berna Karali, 2018. "The impact of data frequency on market efficiency tests of commodity futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 696-714, June.
    13. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    14. Brendan K. Beare, 2018. "Unit Root Testing with Unstable Volatility," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 816-835, November.
    15. Giuseppe Cavaliere & A. M. Robert Taylor, 2009. "Bootstrap M Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 393-421.
    16. Li, Dong & Zhang, Xingfa & Zhu, Ke & Ling, Shiqing, 2018. "The ZD-GARCH model: A new way to study heteroscedasticity," Journal of Econometrics, Elsevier, vol. 202(1), pages 1-17.
    17. Richard, Patrick, 2009. "Modified fast double sieve bootstraps for ADF tests," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4490-4499, October.
    18. Chen, Min & Zhu, Ke, 2015. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 189(2), pages 313-320.
    19. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    20. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:35:y:2014:i:4:p:299-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.