IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v29y2008i2p371-401.html
   My bibliography  Save this article

Bootstrap Unit-Root Tests: Comparison and Extensions

Author

Listed:
  • Franz C. Palm
  • Stephan Smeekes
  • Jean-Pierre Urbain

Abstract

In this article, we study and compare the properties of several bootstrap unit-root tests recently proposed in the literature. The tests are Dickey-Fuller (DF) or Augmented DF, based either on residuals from an autoregression and the use of the block bootstrap or on first-differenced data and the use of the stationary bootstrap or sieve bootstrap. We extend the analysis by interchanging the data transformations (differences vs. residuals), the types of bootstrap and the presence or absence of a correction for autocorrelation in the tests. Copyright 2008 The Authors

Suggested Citation

  • Franz C. Palm & Stephan Smeekes & Jean-Pierre Urbain, 2008. "Bootstrap Unit-Root Tests: Comparison and Extensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 371-401, March.
  • Handle: RePEc:bla:jtsera:v:29:y:2008:i:2:p:371-401
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9892.2007.00565.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    2. Anders Rygh Swensen, 2003. "Bootstrapping unit root tests for integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 99-126, January.
    3. Efstathios Paparoditis & Dimitris N. Politis, 2003. "Residual-Based Block Bootstrap for Unit Root Testing," Econometrica, Econometric Society, vol. 71(3), pages 813-855, May.
    4. Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, July.
    5. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    6. Swensen, Anders Rygh, 2003. "A Note On The Power Of Bootstrap Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 19(01), pages 32-48, February.
    7. Paparoditis, Efstathios & Politis, Dimitris N., 2005. "Bootstrapping Unit Root Tests for Autoregressive Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 545-553, June.
    8. Paparoditis, Efstathios & Politis, Dimitris N, 2001. "Unit Root Testing via the Continuous-Path Block Bootstrap," University of California at San Diego, Economics Working Paper Series qt9qb4r775, Department of Economics, UC San Diego.
    9. Park, Joon Y., 2002. "An Invariance Principle For Sieve Bootstrap In Time Series," Econometric Theory, Cambridge University Press, vol. 18(02), pages 469-490, April.
    10. Yoosoon Chang & Joon Park, 2002. "On The Asymptotics Of Adf Tests For Unit Roots," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 431-447.
    11. Parker, Cameron & Paparoditis, Efstathios & Politis, Dimitris N., 2006. "Unit root testing via the stationary bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 601-638, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:29:y:2008:i:2:p:371-401. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.