IDEAS home Printed from https://ideas.repec.org/p/unm/umamet/2006015.html
   My bibliography  Save this paper

Bootstrap unit root tests: comparison and extensions

Author

Listed:
  • Palm, F.C.

    (Quantitative Economics)

  • Smeekes, S.

    (Quantitative Economics)

  • Urbain, J.R.Y.J.

    (Quantitative Economics)

Abstract

In this article, we study and compare the properties of several bootstrap unit-root tests recently proposed in the literature. The tests are Dickey-Fuller (DF) or Augmented DF, based either on residuals from an autoregression and the use of the block bootstrap or on first-differenced data and the use of the stationary bootstrap or sieve bootstrap. We extend the analysis by interchanging the data transformations (differences vs. residuals), the types of bootstrap and the presence or absence of a correction for autocorrelation in the tests. Copyright 2008 The Authors
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Palm, F.C. & Smeekes, S. & Urbain, J.R.Y.J., 2006. "Bootstrap unit root tests: comparison and extensions," Research Memorandum 015, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  • Handle: RePEc:unm:umamet:2006015
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/portal/files/688534/content
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anders Rygh Swensen, 2003. "Bootstrapping unit root tests for integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 99-126, January.
    2. Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, July.
    3. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    4. Swensen, Anders Rygh, 2003. "A Note On The Power Of Bootstrap Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 19(01), pages 32-48, February.
    5. Paparoditis, Efstathios & Politis, Dimitris N., 2005. "Bootstrapping Unit Root Tests for Autoregressive Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 545-553, June.
    6. Yoosoon Chang & Joon Park, 2002. "On The Asymptotics Of Adf Tests For Unit Roots," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 431-447.
    7. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    8. Efstathios Paparoditis & Dimitris N. Politis, 2003. "Residual-Based Block Bootstrap for Unit Root Testing," Econometrica, Econometric Society, vol. 71(3), pages 813-855, May.
    9. Paparoditis, Efstathios & Politis, Dimitris N, 2001. "Unit Root Testing via the Continuous-Path Block Bootstrap," University of California at San Diego, Economics Working Paper Series qt9qb4r775, Department of Economics, UC San Diego.
    10. Park, Joon Y., 2002. "An Invariance Principle For Sieve Bootstrap In Time Series," Econometric Theory, Cambridge University Press, vol. 18(02), pages 469-490, April.
    11. Parker, Cameron & Paparoditis, Efstathios & Politis, Dimitris N., 2006. "Unit root testing via the stationary bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 601-638, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, Eunju & Shin, Dong Wan, 2015. "Stationary bootstrapping for semiparametric panel unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 14-25.
    2. Skrobotov Anton, 2018. "On Bootstrap Implementation of Likelihood Ratio Test for a Unit Root," Working Papers wpaper-2018-302, Gaidar Institute for Economic Policy, revised 2018.
    3. Jaap W. B. Bos & Bertrand Candelon & Claire Economidou, 2016. "Does knowledge spill over across borders and technology regimes?," Journal of Productivity Analysis, Springer, vol. 46(1), pages 63-82, August.
    4. repec:gam:jecnmx:v:4:y:2016:i:2:p:21:d:67747 is not listed on IDEAS
    5. Andrea Silvestrini, 2010. "Testing fiscal sustainability in Poland: a Bayesian analysis of cointegration," Empirical Economics, Springer, vol. 39(1), pages 241-274, August.
    6. Shin, Dong Wan & Hwang, Eunju, 2013. "Stationary bootstrapping for cointegrating regressions," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 474-480.
    7. Stephan Smeekes & Jean-Pierre Urbain, 2014. "On the Applicability of the Sieve Bootstrap in Time Series Panels," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 139-151, February.
    8. Su, Jen-Je & Cheung, Adrian (Wai-Kong) & Roca, Eduardo, 2014. "Does Purchasing Power Parity hold? New evidence from wild-bootstrapped nonlinear unit root tests in the presence of heteroskedasticity," Economic Modelling, Elsevier, vol. 36(C), pages 161-171.
    9. Smeekes, Stephan & Taylor, A.M. Robert, 2012. "Bootstrap Union Tests For Unit Roots In The Presence Of Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 28(02), pages 422-456, April.
    10. Richard, Patrick, 2009. "Modified fast double sieve bootstraps for ADF tests," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4490-4499, October.
    11. Smeekes S. & Urbain J.R.Y.J., 2014. "A multivariate invariance principle for modified wild bootstrap methods with an application to unit root testing," Research Memorandum 008, Maastricht University, Graduate School of Business and Economics (GSBE).
    12. Stephan Smeekes, 2013. "Detrending Bootstrap Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 869-891, November.
    13. Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2010. "A Sieve Bootstrap Test For Cointegration In A Conditional Error Correction Model," Econometric Theory, Cambridge University Press, vol. 26(03), pages 647-681, June.
    14. Franco, G.C. & Reisen, V.A. & Alves, F.A., 2013. "Bootstrap tests for fractional integration and cointegration: A comparison study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 19-29.
    15. Phillips, Peter C.B., 2010. "Bootstrapping I(1) data," Journal of Econometrics, Elsevier, vol. 158(2), pages 280-284, October.
    16. V. A. Reisen & C. Lévy-Leduc & M. Bourguignon & H. Boistard, 2017. "Robust Dickey–Fuller tests based on ranks for time series with additive outliers," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 115-131, January.
    17. Sevan Gulesserian & Mohitosh Kejriwal, 2014. "On the power of bootstrap tests for stationarity: a Monte Carlo comparison," Empirical Economics, Springer, vol. 46(3), pages 973-998, May.
    18. Xuguang Sheng & Jingyun Yang, 2013. "Truncated Product Methods for Panel Unit Root Tests," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(4), pages 624-636, August.
    19. Nunzio Cappuccio & Diego Lubian, 2016. "Unit Root Tests: The Role of the Univariate Models Implied by Multivariate Time Series," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-11, April.
    20. repec:kap:compec:v:50:y:2017:i:1:d:10.1007_s10614-016-9586-z is not listed on IDEAS
    21. Gutierrez, Luciano, 2011. "Looking for Rational Bubbles in Agricultural Commodity Markets," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 120377, European Association of Agricultural Economists.
    22. Gutierrez, Luciano, 2011. "Bootstrapping asset price bubbles," Economic Modelling, Elsevier, vol. 28(6), pages 2488-2493.
    23. Shelef, Amit, 2016. "A Gini-based unit root test," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 763-772.
    24. Guodong Li & Chenlei Leng & Chih-Ling Tsai, 2014. "A Hybrid Bootstrap Approach To Unit Root Tests," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 299-321, July.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2006015. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Leonne Portz). General contact details of provider: http://edirc.repec.org/data/meteonl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.