IDEAS home Printed from
   My bibliography  Save this paper

Forecasting Implied Volatility Surfaces


  • Francesco Audrino


  • Dominik Colagelo



We propose a new semi-parametric model for the implied volatility surface, which incorporates machine learning algorithms. Given a starting model, a tree-boosting algorithm sequentially minimizes the residuals of observed and estimated implied volatility. To overcome the poor predicting power of existing models, we include a grid in the region of interest, and implement a cross-validation strategy to find an optimal stopping value for the tree boosting. Back testing the out-of-sample appropriateness of our model on a large data set of implied volatilities on S&P 500 options, we provide empirical evidence of its strong predictive potential, as well as comparing it to other standard approaches in the literature.

Suggested Citation

  • Francesco Audrino & Dominik Colagelo, 2007. "Forecasting Implied Volatility Surfaces," University of St. Gallen Department of Economics working paper series 2007 2007-42, Department of Economics, University of St. Gallen.
  • Handle: RePEc:usg:dp2007:2007-42

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    2. Matthias R. Fengler & Wolfgang K. Härdle & Enno Mammen, 0. "A semiparametric factor model for implied volatility surface dynamics," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(2), pages 189-218.
    3. Granger,Clive W. J., 1999. "Empirical Modeling in Economics," Cambridge Books, Cambridge University Press, number 9780521662086, March.
    4. Nicolas P. B. Bollen & Robert E. Whaley, 2004. "Does Net Buying Pressure Affect the Shape of Implied Volatility Functions?," Journal of Finance, American Finance Association, vol. 59(2), pages 711-753, April.
    5. Francesco Audrino, 2005. "The Stability of Factor Models of Interest Rates," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(3), pages 422-441.
    6. Hentschel, Ludger, 2003. "Errors in Implied Volatility Estimation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(04), pages 779-810, December.
    7. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    8. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    9. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Implied Volatility; Implied Volatility Surface; Forecasting; Tree Boosting; Regression Tree; Functional Gradient Descent;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:dp2007:2007-42. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joerg Baumberger). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.