IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v618y2023ics0378437123000511.html
   My bibliography  Save this article

The empirical performance of option implied volatility surface-driven optimal portfolios

Author

Listed:
  • Guidolin, Massimo
  • Wang, Kai

Abstract

We apply a two-step strategy to forecast the dynamics of the volatility surface implicit in option prices to all American-style options written on the stocks that have entered the Dow Jones Industrial Average Index between 2004 and 2016. We explore whether the implied volatilities extracted through the two-step approach help improve the out-of-sample performance of minimum-variance portfolios. We find that, by using option-implied volatilities in estimating the covariance matrix, the ex-post volatility of the minimum-variance portfolio is lower when compared with the equal-weighted portfolio and a minimum-variance portfolio simply derived from the historical, sample covariance matrix estimator. Moreover, over most of our 13-year sample, the realized Sharpe, Sortino and information ratios increase when the sample covariance matrix estimator is replaced with its implied counterpart. However, the benefits of using option-implied information are countered by an increase in portfolio turnover that may imply higher (implicit) transaction costs. We also apply shrinkage methods to both the sample covariance estimator and the implied covariance estimator and note that they often lead to significant improvements in portfolio performance.

Suggested Citation

  • Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
  • Handle: RePEc:eee:phsmap:v:618:y:2023:i:c:s0378437123000511
    DOI: 10.1016/j.physa.2023.128496
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123000511
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    2. Timmermann, Allan, 2001. "Structural Breaks, Incomplete Information, and Stock Prices," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 299-314, July.
    3. Chen, Si & Zhou, Zhen & Li, Shenghong, 2016. "An efficient estimate and forecast of the implied volatility surface: A nonlinear Kalman filter approach," Economic Modelling, Elsevier, vol. 58(C), pages 655-664.
    4. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    5. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    6. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    7. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    8. Alexander Kempf & Olaf Korn & Sven Saßning, 2015. "Portfolio Optimization Using Forward-Looking Information," Review of Finance, European Finance Association, vol. 19(1), pages 467-490.
    9. Olivier Ledoit & Michael Wolf, 2003. "Honey, I shrunk the sample covariance matrix," Economics Working Papers 691, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    11. Andrew Skabar, 2013. "Direction‐of‐Change Financial Time Series Forecasting using a Similarity‐Based Classification Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 409-422, August.
    12. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    13. Jay Cao & Jacky Chen & John Hull, 2020. "A neural network approach to understanding implied volatility movements," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1405-1413, September.
    14. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    15. Beber, Alessandro & Brandt, Michael W., 2006. "The effect of macroeconomic news on beliefs and preferences: Evidence from the options market," Journal of Monetary Economics, Elsevier, vol. 53(8), pages 1997-2039, November.
    16. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    17. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    18. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    19. Kim, Min Jae & Lee, Sun Young & Hwang, Dong Il & Kim, Soo Yong & Ko, In Kyu, 2010. "Dynamics of implied volatility surfaces from random matrix theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2762-2769.
    20. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2011. "How important is the term structure in implied volatility surface modeling? Evidence from foreign exchange options," Journal of International Money and Finance, Elsevier, vol. 30(4), pages 623-640, June.
    21. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    22. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    23. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    24. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    25. Carr, Peter & Wu, Liuren, 2016. "Analyzing volatility risk and risk premium in option contracts: A new theory," Journal of Financial Economics, Elsevier, vol. 120(1), pages 1-20.
    26. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2019. "Forecasting the KOSPI200 spot volatility using various volatility measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 156-166.
    27. Kenneth R. French, 2008. "Presidential Address: The Cost of Active Investing," Journal of Finance, American Finance Association, vol. 63(4), pages 1537-1573, August.
    28. Alexandros Kostakis & Nikolaos Panigirtzoglou & George Skiadopoulos, 2011. "Market Timing with Option-Implied Distributions: A Forward-Looking Approach," Management Science, INFORMS, vol. 57(7), pages 1231-1249, July.
    29. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    30. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    31. Neumann, Michael & Skiadopoulos, George, 2013. "Predictable Dynamics in Higher-Order Risk-Neutral Moments: Evidence from the S&P 500 Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(3), pages 947-977, June.
    32. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
    33. Maria Kyriacou & Jose Olmo & Marius Strittmatter, 2021. "Optimal portfolio allocation using option‐implied information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 266-285, February.
    34. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, Oxford University Press, vol. 114(2), pages 433-495.
    35. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    36. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    37. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    38. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    39. Taboga, Marco, 2016. "Option-implied probability distributions: How reliable? How jagged?," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 453-469.
    40. Melanie Birke & Kay F. Pilz, 2009. "Nonparametric Option Pricing with No-Arbitrage Constraints," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 53-76, Spring.
    41. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    42. Ederington, Louis H. & Lee, Jae Ha, 1996. "The Creation and Resolution of Market Uncertainty: The Impact of Information Releases on Implied Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(4), pages 513-539, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    2. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    3. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    4. Kempf, Alexander & Korn, Olaf & Saßning, Sven, 2014. "Portfolio optimization using forward-looking information," CFR Working Papers 11-10 [rev.], University of Cologne, Centre for Financial Research (CFR).
    5. Kempf, Alexander & Korn, Olaf & Saßning, Sven, 2011. "Portfolio optimization using forward-looking information," CFR Working Papers 11-10, University of Cologne, Centre for Financial Research (CFR).
    6. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    7. Shengli Chen & Zili Zhang, 2019. "Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism," Papers 1912.11059, arXiv.org.
    8. Michel van der Wel & Sait R. Ozturk & Dick van Dijk, 2015. "Dynamic Factor Models for the Volatility Surface," CREATES Research Papers 2015-13, Department of Economics and Business Economics, Aarhus University.
    9. Alexander Kempf & Olaf Korn & Sven Saßning, 2015. "Portfolio Optimization Using Forward-Looking Information," Review of Finance, European Finance Association, vol. 19(1), pages 467-490.
    10. Lambrinoudakis, Costas & Skiadopoulos, George & Gkionis, Konstantinos, 2019. "Capital structure and financial flexibility: Expectations of future shocks," Journal of Banking & Finance, Elsevier, vol. 104(C), pages 1-18.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    13. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    14. Brinkmann, Felix & Kempf, Alexander & Korn, Olaf, 2013. "Forward-looking measures of higher-order dependencies with an application to portfolio selection," CFR Working Papers 13-08, University of Cologne, Centre for Financial Research (CFR).
    15. Le, Van & Zurbruegg, Ralf, 2014. "Forecasting option smile dynamics," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 32-45.
    16. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    17. Costas Lambrinoudakis & Michael Neumann & George Skiadopoulos, 2014. "Capital Structure and Financial Flexibility: Expectations of Future Shocks," Working Papers 731, Queen Mary University of London, School of Economics and Finance.
    18. Brinkmann, Felix & Kempf, Alexander & Korn, Olaf, 2014. "Forward-looking measures of higher-order dependencies with an application to portfolio selection," CFR Working Papers 13-08 [rev.], University of Cologne, Centre for Financial Research (CFR).
    19. Michael Curran & Patrick O'Sullivan & Ryan Zalla, 2020. "Can Volatility Solve the Naive Portfolio Puzzle?," Papers 2005.03204, arXiv.org, revised Feb 2022.
    20. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".

    More about this item

    Keywords

    Equity options; Implied volatility surface; Predictability; Optimal portfolios;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:618:y:2023:i:c:s0378437123000511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.