IDEAS home Printed from
   My bibliography  Save this paper

Honey, I shrunk the sample covariance matrix


  • Olivier Ledoit
  • Michael Wolf


The central message of this paper is that nobody should be using the sample covariance matrix for the purpose of portfolio optimization. It contains estimation error of the kind most likely to perturb a mean-variance optimizer. In its place, we suggest using the matrix obtained from the sample covariance matrix through a transformation called shrinkage. This tends to pull the most extreme coefficients towards more central values, thereby systematically reducing estimation error where it matters most. Statistically, the challenge is to know the optimal shrinkage intensity, and we give the formula for that. Without changing any other step in the portfolio optimization process, we show on actual stock market data that shrinkage reduces tracking error relative to a benchmark index, and substantially increases the realized information ratio of the active portfolio manager.

Suggested Citation

  • Olivier Ledoit & Michael Wolf, 2003. "Honey, I shrunk the sample covariance matrix," Economics Working Papers 691, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:691

    Download full text from publisher

    File URL:
    File Function: Whole Paper
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Connor, Gregory & Korajczyk, Robert A, 1993. " A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    2. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Caicedo-Llano, Juliana & Dionysopoulos, Thomas, 2008. "Market integration: A risk-budgeting guide for pure alpha investors," Journal of Multinational Financial Management, Elsevier, vol. 18(4), pages 313-327, October.
    2. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    3. Loriana Pelizzon & Massimiliano Caporin, 2012. "Market volatility, optimal portfolios and naive asset allocations," Working Papers 2012_08, Department of Economics, University of Venice "Ca' Foscari".
    4. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2004. "A Jackknife Estimator for Tracking Error Variance of Optimal Portfolios Constructed Using Estimated Inputs1," NBER Working Papers 10447, National Bureau of Economic Research, Inc.
    5. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    6. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    7. Michael Wolf, 2006. "Resampling vs. Shrinkage for Benchmarked Managers," IEW - Working Papers 263, Institute for Empirical Research in Economics - University of Zurich.
    8. Soufiane Hayou, 2017. "On the overestimation of the largest eigenvalue of a covariance matrix," Papers 1708.03551,

    More about this item


    Covariance matrix; Markovitz optimization; shrinkage; tracking error;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:691. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.