IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Path Forecast Evaluation

  • Òscar Jordà
  • Massimiliano Marcellino

A path forecast refers to the sequence of forecasts 1 to H periods into the future. A summary of the range of possible paths the predicted variable may follow for a given confidence level requires construction of simultaneous confidence regions that adjust for any covariance between the elements of the path forecast. This paper shows how to construct such regions with the joint predictive density and Scheffé’s (1953) S-method. In addition, the joint predictive density can be used to construct simple statistics to evaluate the local internal consistency of a forecasting exercise of a system of variables. Monte Carlo simulations demonstrate that these simultaneous confidence regions provide approximately correct coverage in situations where traditional error bands, based on the collection of marginal predictive densities for each horizon, are vastly off mark. The paper showcases these methods with an application to the most recent monetary episode of interest rate hikes in the U.S. macroeconomy.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cadmus.eui.eu/dspace/bitstream/1814/9813/1/ECO_2008_34.pdf
File Function: main text
Download Restriction: no

Paper provided by European University Institute in its series Economics Working Papers with number ECO2008/34.

as
in new window

Length:
Date of creation: 2008
Date of revision:
Handle: RePEc:eui:euiwps:eco2008/34
Contact details of provider: Postal:
Badia Fiesolana, Via dei Roccettini, 9, 50014 San Domenico di Fiesole (FI) Italy

Phone: +39-055-4685.982
Fax: +39-055-4685.902
Web page: http://www.eui.eu/ECO/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-38, May.
  2. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
  3. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, 07.
  4. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
  5. Dufour, J.-M., 1986. "Exact tests and confidence sets in linear regressions with autocorrelated errors," CORE Discussion Papers 1986037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  6. Eric M. Leeper & Tao Zha, 2002. "Modest policy interventions," FRB Atlanta Working Paper 2002-19, Federal Reserve Bank of Atlanta.
  7. Pablo Guerron-Quintana & Atsushi Inoue & Lutz Kilian, 2009. "Frequentist inference in weakly identified DSGE models," Working Papers 09-13, Federal Reserve Bank of Philadelphia.
  8. Baillie, R.T. & Bollerslev, R.T., 1990. "Prediction In Dynamic Models With Time Dependent Conditional Variances," Papers 8815, Michigan State - Econometrics and Economic Theory.
  9. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
  10. Òscar Jordà, 2009. "Simultaneous Confidence Regions for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 91(3), pages 629-647, August.
  11. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
  12. Lütkepohl, Helmut & Poskitt, D.S., 1991. "Estimating Orthogonal Impulse Responses via Vector Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 7(04), pages 487-496, December.
  13. Garratt, Anthony & Kevin Lee & M Hashem Pesaran & Yongcheol Shin, 2002. "Forecast Uncertainties In Macroeconometric Modelling: An Application to the UK Economy," Royal Economic Society Annual Conference 2002 82, Royal Economic Society.
  14. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
  15. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
  16. Oscar Jorda & Sharon Kozicki, 2007. "Estimation and Inference by the Method of Projection Minimum Distance," Working Papers 78, University of California, Davis, Department of Economics.
  17. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053.
  18. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
  19. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
  20. Clements, M.P. & Hendry, D., 1992. "On the Limitations of Comparing Mean Square Forecast Errors," Economics Series Working Papers 99138, University of Oxford, Department of Economics.
  21. Savin, N.E., 1984. "Multiple hypothesis testing," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 14, pages 827-879 Elsevier.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2008/34. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anne Banks)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.