IDEAS home Printed from https://ideas.repec.org/p/eui/euiwps/eco2008-34.html
   My bibliography  Save this paper

Path Forecast Evaluation

Author

Listed:
  • Òscar Jordà
  • Massimiliano Marcellino

Abstract

A path forecast refers to the sequence of forecasts 1 to H periods into the future. A summary of the range of possible paths the predicted variable may follow for a given confidence level requires construction of simultaneous confidence regions that adjust for any covariance between the elements of the path forecast. This paper shows how to construct such regions with the joint predictive density and Scheffé’s (1953) S-method. In addition, the joint predictive density can be used to construct simple statistics to evaluate the local internal consistency of a forecasting exercise of a system of variables. Monte Carlo simulations demonstrate that these simultaneous confidence regions provide approximately correct coverage in situations where traditional error bands, based on the collection of marginal predictive densities for each horizon, are vastly off mark. The paper showcases these methods with an application to the most recent monetary episode of interest rate hikes in the U.S. macroeconomy.

Suggested Citation

  • Òscar Jordà & Massimiliano Marcellino, 2008. "Path Forecast Evaluation," Economics Working Papers ECO2008/34, European University Institute.
  • Handle: RePEc:eui:euiwps:eco2008/34
    as

    Download full text from publisher

    File URL: http://cadmus.eui.eu/dspace/bitstream/1814/9813/1/ECO_2008_34.pdf
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Òscar Jordà, 2009. "Simultaneous Confidence Regions for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 91(3), pages 629-647, August.
    2. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    3. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    4. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    5. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    6. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    7. Clements, M.P. & Hendry, D., 1992. "On the Limitations of Comparing Mean Square Forecast Errors," Economics Series Working Papers 99138, University of Oxford, Department of Economics.
    8. Garrat, A. & Lee, K. & Pesaran, M.H. & Shin, Y., 2000. "Forecast Uncertainties in Macroeconometric Modelling: An Application to the UK Economy," Cambridge Working Papers in Economics 0004, Faculty of Economics, University of Cambridge.
    9. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    10. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
    11. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    12. Lütkepohl, Helmut & Poskitt, D.S., 1991. "Estimating Orthogonal Impulse Responses via Vector Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 7(04), pages 487-496, December.
    13. Pablo Guerron-Quintana & Atsushi Inoue & Lutz Kilian, 2009. "Frequentist inference in weakly identified DSGE models," Working Papers 09-13, Federal Reserve Bank of Philadelphia.
    14. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    15. Savin, N.E., 1984. "Multiple hypothesis testing," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 14, pages 827-879 Elsevier.
    16. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    17. Cameron,A. Colin & Trivedi,Pravin K., 2008. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9787111235767.
    18. Òscar Jordà & Sharon Kozicki, 2007. "Estimation and Inference by the Method of Projection Minimum Distance," Staff Working Papers 07-56, Bank of Canada.
    19. Baillie, Richard T. & Bollerslev, Tim, 1992. "Prediction in dynamic models with time-dependent conditional variances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 91-113.
    20. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
    21. Dufour, Jean-Marie, 1990. "Exact Tests and Confidence Sets in Linear Regressions with Autocorrelated Errors," Econometrica, Econometric Society, vol. 58(2), pages 475-494, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McCracken, Michael W. & McGillicuddy, Joseph, 2017. "An Empirical Investigation of Direct and Iterated Multistep Conditional Forecasts," Working Papers 2017-40, Federal Reserve Bank of St. Louis.
    2. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
    3. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    4. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2015. "Comparison of methods for constructing joint confidence bands for impulse response functions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 782-798.
    5. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Michael Wolf & Dan Wunderli, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 352-376, May.
    6. Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941, July.
    7. repec:eee:energy:v:141:y:2017:i:c:p:2251-2263 is not listed on IDEAS
    8. Farooq Akram & Andrew Binning & Junior Maih, 2016. "Joint Prediction Bands for Macroeconomic Risk Management," Working Papers No 5/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    9. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
    10. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2018. "Skewness-Adjusted Bootstrap Confidence Intervals and Confidence Bands for Impulse Response Functions," MAGKS Papers on Economics 201810, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    11. Schüssler, Rainer & Trede, Mark, 2016. "Constructing minimum-width confidence bands," Economics Letters, Elsevier, vol. 145(C), pages 182-185.
    12. Stefan Bruder, 2014. "Comparing several methods to compute joint prediction regions for path forecasts generated by vector autoregressions," ECON - Working Papers 181, Department of Economics - University of Zurich, revised Dec 2015.
    13. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," Discussion Papers of DIW Berlin 1354, DIW Berlin, German Institute for Economic Research.
    14. repec:gam:jeners:v:10:y:2017:i:9:p:1402-:d:111989 is not listed on IDEAS
    15. Staszewska-Bystrova Anna, 2013. "Modified Scheffé’s Prediction Bands," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(5-6), pages 680-690, October.
    16. Matei Demetrescu & Mu-Chun Wang, 2014. "Incorporating Asymmetric Preferences into Fan Charts and Path Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 287-297, April.
    17. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2018. "Skewness-Adjusted Bootstrap Confidence Intervals and Confidence Bands for Impulse Response Functions," Lodz Economics Working Papers 1/2018, University of Lodz, Faculty of Economics and Sociology.
    18. Dag Kolsrud, 2015. "A Time‐Simultaneous Prediction Box for a Multivariate Time Series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(8), pages 675-693, December.
    19. Kilian, Lutz & Kim, Yun Jung, 2009. "Do Local Projections Solve the Bias Problem in Impulse Response Inference?," CEPR Discussion Papers 7266, C.E.P.R. Discussion Papers.
    20. repec:spr:annopr:v:238:y:2016:i:1:d:10.1007_s10479-015-2092-1 is not listed on IDEAS
    21. Antoniadis, Anestis & Brossat, Xavier & Cugliari, Jairo & Poggi, Jean-Michel, 2016. "A prediction interval for a function-valued forecast model: Application to load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 939-947.
    22. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.
    23. Paolo Vidoni, 2017. "Improved multivariate prediction regions for Markov process models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 1-18, March.

    More about this item

    Keywords

    path forecast; simultaneous confidence region; error bands;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2008/34. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Julia Valerio). General contact details of provider: http://edirc.repec.org/data/deiueit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.