IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/2017-040.html
   My bibliography  Save this paper

An Empirical Investigation of Direct and Iterated Multistep Conditional Forecasts

Author

Listed:
  • McCracken, Michael W.

    () (Federal Reserve Bank of St. Louis)

  • McGillicuddy, Joseph

    (Federal Reserve Bank of St. Louis)

Abstract

When constructing unconditional point forecasts, both direct- and iterated-multistep (DMS and IMS) approaches are common. However, in the context of producing conditional forecasts, IMS approaches based on vector autoregressions (VAR) are far more common than simpler DMS models. This is despite the fact that there are theoretical reasons to believe that DMS models are more robust to misspecification than are IMS models. In the context of unconditional forecasts, Marcellino, Stock, and Watson (MSW, 2006) investigate the empirical relevance of these theories. In this paper, we extend that work to conditional forecasts. We do so based on linear bivariate and trivariate models estimated using a large dataset of macroeconomic time series. Over comparable samples, our results reinforce those in MSW: the IMS approach is typically a bit better than DMS with significant improvements only at longer horizons. In contrast, when we focus on the Great Moderation sample we find a marked improvement in the DMS approach relative to IMS. The distinction is particularly clear when we forecast nominal rather than real variables where the relative gains can be substantial.

Suggested Citation

  • McCracken, Michael W. & McGillicuddy, Joseph, 2017. "An Empirical Investigation of Direct and Iterated Multistep Conditional Forecasts," Working Papers 2017-40, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:2017-040
    DOI: 10.20955/wp.2017.040
    as

    Download full text from publisher

    File URL: https://files.stlouisfed.org/files/htdocs/wp/2017/2017-040.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://doi.org/10.20955/wp.2017.040
    File Function: https://doi.org/10.20955/wp.2017.040
    Download Restriction: no

    References listed on IDEAS

    as
    1. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    2. repec:taf:jnlbes:v:34:y:2016:i:4:p:574-589 is not listed on IDEAS
    3. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    4. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2008. "The new area-wide model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 944, European Central Bank.
    5. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    6. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    7. Òscar Jordà & Massimiliano Marcellino, 2010. "Path forecast evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 635-662.
    8. Pavel Kapinos & Oscar A. Mitnik, 2016. "A Top-down Approach to Stress-testing Banks," Journal of Financial Services Research, Springer;Western Finance Association, vol. 49(2), pages 229-264, June.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    11. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    12. Chevillon, Guillaume, 2017. "Robustness of Multistep Forecasts and Predictive Regressions at Intermediate and Long Horizons," ESSEC Working Papers WP1710, ESSEC Research Center, ESSEC Business School.
    13. Alberto Caruso & Lucrezia Reichlin & Giovanni Ricco, 2015. "The Legacy Debt and the Joint Path of Public Deficit and Debt in the Euro Area," European Economy - Discussion Papers 2015 - 010, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    14. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    15. Hirtle, Beverly & Kovner, Anna & Vickery, James & Bhanot, Meru, 2016. "Assessing financial stability: The Capital and Loss Assessment under Stress Scenarios (CLASS) model," Journal of Banking & Finance, Elsevier, vol. 69(S1), pages 35-55.
    16. Schorfheide, Frank, 2005. "VAR forecasting under misspecification," Journal of Econometrics, Elsevier, vol. 128(1), pages 99-136, September.
    17. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    18. Bidder, Rhys & Giacomini, Raffaella & McKenna, Andrew, 2016. "Stress Testing with Misspecified Models," Working Paper Series 2016-26, Federal Reserve Bank of San Francisco.
    19. repec:wly:japmet:v:32:y:2017:i:3:p:533-553 is not listed on IDEAS
    20. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    21. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    22. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    23. Campbell, Sean D., 2007. "Macroeconomic Volatility, Predictability, and Uncertainty in the Great Moderation: Evidence From the Survey of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 191-200, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Prediction; forecasting; out-of-sample;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2017-040. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anna Oates). General contact details of provider: http://edirc.repec.org/data/frbslus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.