IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v77y2025ics1544612325003824.html
   My bibliography  Save this article

Prediction of the implied volatility surface–An empirical analysis of the SSE 50ETF option based on CNNs

Author

Listed:
  • Shao, Hualu
  • Zhou, Baicheng
  • Gong, Shaoqing

Abstract

With advancements in artificial intelligence, deep learning techniques have been widely used in predicting financial market volatility. This study forecasts the implied volatility of stock options of the top 50 companies listed on the Shanghai Stock Exchange(SSE) using a convolutional neural network (CNN) with a scaled exponential linear unit activation function and no pooling layer. The CNN model is compared to a back-propagation (BP) neural network to evaluate predictive performance. Results show that the CNN model shows superior performance in predicting implied volatility compared to the BP neural network, accurately fitting data patterns as well as smile and term structures.

Suggested Citation

  • Shao, Hualu & Zhou, Baicheng & Gong, Shaoqing, 2025. "Prediction of the implied volatility surface–An empirical analysis of the SSE 50ETF option based on CNNs," Finance Research Letters, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:finlet:v:77:y:2025:i:c:s1544612325003824
    DOI: 10.1016/j.frl.2025.107119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612325003824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.107119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    3. Xiangyu Wei & Zhilong Xie & Rui Cheng & Di Zhang & Qing Li, 2021. "An Intelligent Learning and Ensembling Framework for Predicting Option Prices," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4237-4260, December.
    4. Wan, Jieru & Yin, Libo & Wu, You, 2024. "Return and volatility connectedness across global ESG stock indexes: Evidence from the time-frequency domain analysis," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 397-428.
    5. Ma, Chenyao & Yan, Sheng, 2022. "Deep learning in the Chinese stock market: The role of technical indicators," Finance Research Letters, Elsevier, vol. 49(C).
    6. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    7. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    8. Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2023. "A two-step framework for arbitrage-free prediction of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 23(1), pages 21-34, January.
    9. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    10. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    11. Wu, You & Ren, Wenting & Wan, Jieru & Liu, Xiaoxue, 2023. "Time-frequency volatility connectedness between fossil energy and agricultural commodities: Comparing the COVID-19 pandemic with the Russia-Ukraine conflict," Finance Research Letters, Elsevier, vol. 55(PA).
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Guo, Junjie & Guo, Yumei & Miao, Shan & Pang, Xin, 2021. "An investigation of semantic similarity in PBOC’s communication on RMB volatility," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 441-455.
    14. Haoye Liang & Shibo Liu & Xinyu Zhan & Wanfang Xiong, 2024. "The Effect of Gambling Preference on Stock Volatility: From the Evidence of Looser Price Limits Regulation," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 60(10), pages 2174-2189, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Conghua & Zhai, Jia & Wang, Yinuo & Cao, Yi, 2024. "Implied volatility is (almost) past-dependent: Linear vs non-linear models," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    2. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    3. Marins, Jaqueline Terra Moura & Vicente, José Valentim Machado, 2017. "Do the central bank actions reduce interest rate volatility?," Economic Modelling, Elsevier, vol. 65(C), pages 129-137.
    4. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    6. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    7. Qian, Yihe & Zhang, Yang, 2025. "Long-term forecasting in asset pricing: Machine learning models’ sensitivity to macroeconomic shifts and firm-specific factors," The North American Journal of Economics and Finance, Elsevier, vol. 78(C).
    8. Siriopoulos, Costas & Fassas, Athanasios, 2012. "An investor sentiment barometer — Greek Implied Volatility Index (GRIV)," Global Finance Journal, Elsevier, vol. 23(2), pages 77-93.
    9. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    10. Thaddeus Neururer & George Papadakis & Edward J. Riedl, 2016. "Tests of investor learning models using earnings innovations and implied volatilities," Review of Accounting Studies, Springer, vol. 21(2), pages 400-437, June.
    11. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    12. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    13. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    14. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    15. Silvia Muzzioli & Luca Gambarelli & Bernard De Baets, 2018. "Indices for Financial Market Volatility Obtained Through Fuzzy Regression," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1659-1691, November.
    16. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    17. Birkelund, Ole Henrik & Haugom, Erik & Molnár, Peter & Opdal, Martin & Westgaard, Sjur, 2015. "A comparison of implied and realized volatility in the Nordic power forward market," Energy Economics, Elsevier, vol. 48(C), pages 288-294.
    18. Jian Ni & Yue Xu, 2023. "Forecasting the Dynamic Correlation of Stock Indices Based on Deep Learning Method," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 35-55, January.
    19. Bondarenko, Oleg, 2014. "Variance trading and market price of variance risk," Journal of Econometrics, Elsevier, vol. 180(1), pages 81-97.
    20. Tony Guida & Guillaume Coqueret, 2019. "Ensemble Learning Applied to Quant Equity: Gradient Boosting in a Multifactor Framework," Post-Print hal-02311104, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:77:y:2025:i:c:s1544612325003824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.