Forex Exchange Rate Forecasting Using Deep Recurrent Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
- Dautel, Alexander Jakob & Härdle, Wolfgang Karl & Lessmann, Stefan & Seow, Hsin-Vonn, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," IRTG 1792 Discussion Papers 2020-006, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
References listed on IDEAS
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Michael J. Sager & Mark P. Taylor, 2006. "Under the microscope: the structure of the foreign exchange market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 11(1), pages 81-95.
- Wu, Jyh-Lin & Chen, Show-Lin, 1998. "Foreign exchange market efficiency revisited," Journal of International Money and Finance, Elsevier, vol. 17(5), pages 831-838, October.
- Yaodong Yang & Alisa Kolesnikova & Stefan Lessmann & Tiejun Ma & Ming-Chien Sung & Johnnie E. V. Johnson, 2018. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," Papers 1812.06175, arXiv.org, revised Nov 2019.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000.
"Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation,"
Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
- Andrew Lo & Harry Mamaysky & Jiang Wang, 1999. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Computing in Economics and Finance 1999 402, Society for Computational Economics.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," NBER Working Papers 7613, National Bureau of Economic Research, Inc.
- van de Gucht, Linda M. & Dekimpe, Marnik G. & Kwok, Chuck C. Y., 1996. "Persistence in foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 15(2), pages 191-220, April.
- Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
- Katarzyna Anna Czech, & Adam Waszkowski, 2012. "Foreign Exchange Market Efficiency. Empirical Results For The Usd/Eur Market," "e-Finanse", University of Information Technology and Management, Institute of Financial Research and Analysis, vol. 8(3), pages 1-9, October.
- Sarno,Lucio & Taylor,Mark P., 2003.
"The Economics of Exchange Rates,"
Cambridge Books,
Cambridge University Press, number 9780521485845.
- Mark P. Taylor, 1995. "The Economics of Exchange Rates," Journal of Economic Literature, American Economic Association, vol. 33(1), pages 13-47, March.
- repec:bla:intfin:v:4:y:2001:i:2:p:303-20 is not listed on IDEAS
- Khurshid Kiani & Terry Kastens, 2008. "Testing Forecast Accuracy of Foreign Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural Network Architectures," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 383-406, November.
- Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
- Nicolas Huck, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," Post-Print hal-02143971, HAL.
- Campbell, John Y. & Lo, Andrew W. & MacKinlay, A. Craig & Whitelaw, Robert F., 1998. "The Econometrics Of Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 2(4), pages 559-562, December.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Junni L. Zhang & Wolfgang K. Härdle & Cathy Y. Chen & Elisabeth Bommes, 2015. "Distillation of News Flow into Analysis of Stock Reactions," SFB 649 Discussion Papers SFB649DP2015-005, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
- Hakkio, Craig S. & Rush, Mark, 1989. "Market efficiency and cointegration: an application to the sterling and deutschemark exchange markets," Journal of International Money and Finance, Elsevier, vol. 8(1), pages 75-88, March.
- Zhang, Junni L. & Härdle, Wolfgang Karl & Chen, Cathy Y. & Bommes, Elisabeth, 2015. "Distillation of news flow into analysis of stock reactions," SFB 649 Discussion Papers 2015-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Richard K. Lyons, 2001. "New Perspective on FX Markets: Order‐Flow Analysis," International Finance, Wiley Blackwell, vol. 4(2), pages 303-320.
- Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
- István Ábel & Pierre L. Siklos & István P. Székely, 1998. "Money and Finance in the Transition to a Market Economy," Books, Edward Elgar Publishing, number 830.
- Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mehmet Sahiner, 2024. "Volatility Spillovers and Contagion During Major Crises: An Early Warning Approach Based on a Deep Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2435-2499, June.
- Fengmin Xu & Jieao Ma, 2023. "Intelligent option portfolio model with perspective of shadow price and risk-free profit," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
- Daniel Poh & Bryan Lim & Stefan Zohren & Stephen Roberts, 2021. "Enhancing Cross-Sectional Currency Strategies by Context-Aware Learning to Rank with Self-Attention," Papers 2105.10019, arXiv.org, revised Jan 2022.
- J. C. Garza Sepúlveda & F. Lopez-Irarragorri & S. E. Schaeffer, 2023. "Forecasting Forex Trend Indicators with Fuzzy Rough Sets," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 229-287, June.
- Krystian Jaworski, 2021. "Forecasting exchange rates for Central and Eastern European currencies using country‐specific factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 977-999, September.
- Davood Pirayesh Neghab & Mucahit Cevik & M. I. M. Wahab, 2023. "Explaining Exchange Rate Forecasts with Macroeconomic Fundamentals Using Interpretive Machine Learning," Papers 2303.16149, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2020. "Separating the signal from the noise – Financial machine learning for Twitter," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
- Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
- Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
- Ben Moews & Gbenga Ibikunle, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Papers 2002.10385, arXiv.org.
- Thomas Günter Fischer & Christopher Krauss & Alexander Deinert, 2019. "Statistical Arbitrage in Cryptocurrency Markets," JRFM, MDPI, vol. 12(1), pages 1-15, February.
- Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
- Guillaume Coqueret & Tony Guida, 2020. "Training trees on tails with applications to portfolio choice," Post-Print hal-04144665, HAL.
- Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Taylor, Mark & Hsu, Po-Hsuan, 2014. "Forty Years, Thirty Currencies and 21,000 Trading Rules: A Large-scale, Data-Snooping Robust Analysis of Technical Trading in t," CEPR Discussion Papers 10018, C.E.P.R. Discussion Papers.
- Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
- Lukas Menkhoff & Mark P. Taylor, 2007.
"The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis,"
Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
- Menkhoff, Lukas & Taylor, Mark P., 2006. "The Obstinate Passion of Foreign Exchange Professionals : Technical Analysis," The Warwick Economics Research Paper Series (TWERPS) 769, University of Warwick, Department of Economics.
- Menkhoff, Lukas & Taylor, Mark P., 2006. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Hannover Economic Papers (HEP) dp-352, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Menkhoff, Lukas & Taylor, Mark P., 2006. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Economic Research Papers 269739, University of Warwick - Department of Economics.
- Pushpendu Ghosh & Ariel Neufeld & Jajati Keshari Sahoo, 2020. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Papers 2004.10178, arXiv.org, revised Jun 2021.
More about this item
Keywords
Deep learning; Financial time series forecasting; Recurrent neural networks; Foreign exchange rates;All these keywords.
JEL classification:
- C00 - Mathematical and Quantitative Methods - - General - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2019008. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.