IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v27y2011i05p1048-1082_00.html
   My bibliography  Save this article

The Moving Blocks Bootstrap For Panel Linear Regression Models With Individual Fixed Effects

Author

Listed:
  • Gonçalves, Sílvia

Abstract

In this paper we propose a bootstrap method for panel data linear regression models with individual fixed effects. The method consists of applying the standard moving blocks bootstrap of Künsch (1989, Annals of Statistics 17, 1217–1241) and Liu and Singh (1992, in R. LePage & L. Billiard (eds.), Exploring the Limits of the Bootstrap ) to the vector containing all the individual observations at each point in time. We show that this bootstrap is robust to serial and cross-sectional dependence of unknown form under the assumption that n (the cross-sectional dimension) is an arbitrary nondecreasing function of T (the time series dimension), where T → ∞, thus allowing for the possibility that both n and T diverge to infinity. The time series dependence is assumed to be weak (of the mixing type), but we allow the cross-sectional dependence to be either strong or weak (including the case where it is absent). Under appropriate conditions, we show that the fixed effects estimator (and also its bootstrap analogue) has a convergence rate that depends on the degree of cross-section dependence in the panel. Despite this, the same studentized test statistics can be computed without reference to the degree of cross-section dependence. Our simulation results show that the moving blocks bootstrap percentile- t intervals have very good coverage properties even when the degree of serial and cross-sectional correlation is large, provided the block size is appropriately chosen.

Suggested Citation

  • Gonçalves, Sílvia, 2011. "The Moving Blocks Bootstrap For Panel Linear Regression Models With Individual Fixed Effects," Econometric Theory, Cambridge University Press, vol. 27(05), pages 1048-1082, October.
  • Handle: RePEc:cup:etheor:v:27:y:2011:i:05:p:1048-1082_00
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466610000630
    File Function: link to article abstract page
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marianne Sensier & Dick van Dijk, 2004. "Testing for Volatility Changes in U.S. Macroeconomic Time Series," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
    2. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    3. Pierre Perron & Serena Ng, 1996. "Useful Modifications to some Unit Root Tests with Dependent Errors and their Local Asymptotic Properties," Review of Economic Studies, Oxford University Press, vol. 63(3), pages 435-463.
    4. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    5. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    6. Busetti, Fabio & Harvey, Andrew, 2008. "Testing For Trend," Econometric Theory, Cambridge University Press, vol. 24(01), pages 72-87, February.
    7. Christiano, Lawrence J, 1992. "Searching for a Break in GNP," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 237-250, July.
    8. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    9. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2007. "Testing for unit roots in time series models with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 140(2), pages 919-947, October.
    10. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    11. Efstathios Paparoditis & Dimitris N. Politis, 2003. "Residual-Based Block Bootstrap for Unit Root Testing," Econometrica, Econometric Society, vol. 71(3), pages 813-855, May.
    12. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    13. Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, July.
    14. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
    15. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
    16. Giuseppe Cavaliere, 2005. "Unit Root Tests under Time-Varying Variances," Econometric Reviews, Taylor & Francis Journals, vol. 23(3), pages 259-292.
    17. repec:cup:etheor:v:24:y:2007:i:01:p:43-71_08 is not listed on IDEAS
    18. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    19. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    20. Vogelsang, Timothy J & Perron, Pierre, 1998. "Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1073-1100, November.
    21. Perron, Pierre & Qu, Zhongjun, 2007. "A simple modification to improve the finite sample properties of Ng and Perron's unit root tests," Economics Letters, Elsevier, vol. 94(1), pages 12-19, January.
    22. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
    23. Harris, David & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Testing For A Unit Root In The Presence Of A Possible Break In Trend," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1545-1588, December.
    24. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    25. Kim, Tae-Hwan & Leybourne, Stephen & Newbold, Paul, 2002. "Unit root tests with a break in innovation variance," Journal of Econometrics, Elsevier, vol. 109(2), pages 365-387, August.
    26. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    27. repec:cup:etheor:v:24:y:2007:i:01:p:43-71 is not listed on IDEAS
    28. Andrews, Donald W. K. & Buchinsky, Moshe, 2001. "Evaluation of a three-step method for choosing the number of bootstrap repetitions," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 345-386, July.
    29. Kim, Dukpa & Perron, Pierre, 2009. "Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses," Journal of Econometrics, Elsevier, vol. 148(1), pages 1-13, January.
    30. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2005. "Stationarity Tests Under Time-Varying Second Moments," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1112-1129, December.
    31. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2008. "Bootstrap Unit Root Tests For Time Series With Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 24(01), pages 43-71, February.
    32. Nunes, Luis C. & Kuan, Chung-Ming & Newbold, Paul, 1995. "Spurious Break," Econometric Theory, Cambridge University Press, vol. 11(04), pages 736-749, August.
    33. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
    34. Josep Lluís Carrion-i-Silvestre & Dukpa Kim & Pierre Perron, 2007. "GLS-based unit root tests with multiple structural breaks both under the null and the alternative hypotheses," Boston University - Department of Economics - Working Papers Series wp2008-019, Boston University - Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galvao, Antonio F. & Montes-Rojas, Gabriel & Sosa-Escudero, Walter & Wang, Liang, 2013. "Tests for skewness and kurtosis in the one-way error component model," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 35-52.
    2. Andrea Fracasso & Giuseppe Vittucci Marzetti, 2014. "International R&D Spillovers, Absorptive Capacity and Relative Backwardness: A Panel Smooth Transition Regression Model," International Economic Journal, Taylor & Francis Journals, pages 137-160.
    3. Hwang, Jungbin & Sun, Yixiao, 2015. "Should We Go One Step Further? Â An Accurate Comparison of One-step and Two-step Procedures in a Generalized Method of Moments Framework," University of California at San Diego, Economics Working Paper Series qt58r2z98m, Department of Economics, UC San Diego.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:27:y:2011:i:05:p:1048-1082_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.