IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Block Bootstrap Hac Robust Tests: The Sophistication Of The Naive Bootstrap

Listed author(s):
  • Gonçalves, Sílvia
  • Vogelsang, Timothy J.

This paper studies the properties of naive block bootstrap tests that are scaled by zero frequency spectral density estimators (long-run variance estimators). The naive bootstrap is a bootstrap where the formula used in the bootstrap world to compute standard errors is the same as the formula used on the original data. Simulation evidence shows that the naive bootstrap can be much more accurate than the standard normal approximation. The larger the HAC bandwidth, the greater the improvement. This improvement holds for a large number of popular kernels, including the Bartlett kernel, and it holds when the independent and identically distributed (i.i.d.) bootstrap is used and yet the data are serially correlated. Using recently developed fixed- b asymptotics for HAC robust tests, we provide theoretical results that can explain the finite sample patterns. We show that the block bootstrap, including the special case of the i.i.d. bootstrap, has the same limiting distribution as the fixed- b asymptotic distribution. For the special case of a location model, we provide theoretical results that suggest the naive bootstrap can be more accurate than the standard normal approximation depending on the choice of the bandwidth and the number of finite moments in the data. Our theoretical results lay the foundation for a bootstrap asymptotic theory that is an alternative to the traditional approach based on Edgeworth expansions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 27 (2011)
Issue (Month): 04 (August)
Pages: 745-791

in new window

Handle: RePEc:cup:etheor:v:27:y:2011:i:04:p:745-791_00
Contact details of provider: Postal:
Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK

Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:27:y:2011:i:04:p:745-791_00. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.