IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Multivariate trend comparisons between autocorrelated climate series with general trend regressors

  • Ross McKitrick

    ()

    (Department of Economics and Finance, University of Guelph)

  • Timothy Vogelsang

    ()

    (Department of Economics, Michigan State University)

Inference regarding trends in climatic data series, including comparisons across different data sets as well as univariate trend significance tests, is complicated by the presence of serial correlation and step-changes in the mean. We review recent developments in the estimation of heteroskedasticity and autocorrelation robust (HAC) covariance estimators as they have been applied to linear trend inference, with focus on the Vogelsang-Franses (2005) nonparametric approach, which provides a unified framework for trend covariance estimation robust to unknown forms of autocorrelation up to but not including unit roots, making it especially useful for climatic data applications. We extend the Vogelsang-Franses approach to allow general deterministic regressors including the case where a step-change in the mean occurs at a known date. Additional regressors change the critical values of the Vogelsang-Franses statistic. We derive an asymptotic approximation that can be used to simulate critical values. We also outline a simple bootstrap procedure that generates valid critical values and p-values. The motivation for extending the Vogelsang-Franses approach is an application that compares climate model generated and observational global temperature data in the tropical lower- and mid-troposphere from 1958 to 2010. Inclusion of a mean shift regressor to capture the Pacific Climate Shift of 1977 causes apparently significant observed trends to become statistically insignificant, and rejection of the equivalence between model generated and observed data trends occurs for much smaller significance levels (i.e. is more strongly rejected).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.uoguelph.ca/economics/sites/uoguelph.ca.economics/files/2011-09.pdf
Our checks indicate that this address may not be valid because: 404 Not Found (http://www.uoguelph.ca/economics/sites/uoguelph.ca.economics/files/2011-09.pdf [302 Found]--> https://www.uoguelph.ca/economics/sites/uoguelph.ca.economics/files/2011-09.pdf). If this is indeed the case, please notify (Stephen Kosempel)


Download Restriction: no

Paper provided by University of Guelph, Department of Economics and Finance in its series Working Papers with number 1109.

as
in new window

Length: 34 pages
Date of creation: 2011
Date of revision:
Handle: RePEc:gue:guelph:2011-09.
Contact details of provider: Postal: Guelph, Ontario, N1G 2W1
Phone: (519) 824-4120 ext. 53898
Fax: (519) 763-8497
Web page: https://www.uoguelph.ca/economics/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory for Heteroskedasticity-Autocorrelation Robust Tests," Working Papers 05-08, Cornell University, Center for Analytic Economics.
  2. Vogelsang, T.J. & Franses, Ph.H.B.F., 2001. "Testing for common deterministic trend slopes," Econometric Institute Research Papers EI 2001-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  3. Gonçalves, Sílvia & Vogelsang, Timothy J., 2011. "Block Bootstrap Hac Robust Tests: The Sophistication Of The Naive Bootstrap," Econometric Theory, Cambridge University Press, vol. 27(04), pages 745-791, August.
  4. Kiefer, Nicholas M., 2001. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using the Bartlett Kernel without Truncation," Working Papers 01-13, Cornell University, Center for Analytic Economics.
  5. Fomby, Tom & Vogelsang, Tim, 2000. "The Application of Size Robust Trend Analysis to Global Warming Temperature Series," Working Papers 00-08, Cornell University, Center for Analytic Economics.
  6. Kiefer, Nicholas M. & Bunzel, Helle & Vogelsang, Timothy & Vogelsang, Timothy & Bunzel, Helle, 2000. "Simple Robust Testing of Regression Hypotheses," Staff General Research Papers 1832, Iowa State University, Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:gue:guelph:2011-09.. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephen Kosempel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.