Validity of Edgeworth expansions for realized volatility estimators
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Ulrich Hounyo & Bezirgen Veliyev, 2015. "Validity of Edgeworth expansions for realized volatility estimators," CREATES Research Papers 2015-21, Department of Economics and Business Economics, Aarhus University.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- He, Lidan & Liu, Qiang & Liu, Zhi, 2020. "Edgeworth corrections for spot volatility estimator," Statistics & Probability Letters, Elsevier, vol. 164(C).
- Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
- Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
- Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017.
"Edgeworth expansion for the pre-averaging estimator,"
Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," CREATES Research Papers 2015-60, Department of Economics and Business Economics, Aarhus University.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," Papers 1512.04716, arXiv.org.
- Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
More about this item
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:19:y:2016:i:1:p:1-32. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/wly/emjrnl/v19y2016i1p1-32.html