IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Edgeworth Corrections for Realized Volatility

Listed author(s):
  • Silvia Goncalves
  • Nour Meddahi

The quality of the asymptotic normality of realized volatility can be poor if sampling does not occur at very high frequencies. In this article we consider an alternative approximation to the finite sample distribution of realized volatility based on Edgeworth expansions. In particular, we show how confidence intervals for integrated volatility can be constructed using these Edgeworth expansions. The Monte Carlo study we conduct shows that the intervals based on the Edgeworth corrections have improved properties relatively to the conventional intervals based on the normal approximation. Contrary to the bootstrap, the Edgeworth approach is an analytical approach that is easily implemented, without requiring any resampling of one's data. A comparison between the bootstrap and the Edgeworth expansion shows that the bootstrap outperforms the Edgeworth corrected intervals. Thus, if we are willing to incur in the additional computational cost involved in computing bootstrap intervals, these are preferred over the Edgeworth intervals. Nevertheless, if we are not willing to incur in this additional cost, our results suggest that Edgeworth corrected intervals should replace the conventional intervals based on the first order normal approximation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 27 (2008)
Issue (Month): 1-3 ()
Pages: 139-162

in new window

Handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:139-162
DOI: 10.1080/07474930701870420
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:139-162. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.