IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "Tests of Conditional Predictive Ability"

by Raffaella Giacomini & Halbert White

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Park, Timothy A. & Gubanova, Tatiana & Lohr, Luanne & Escalante, Cesar L., 2005. "Forecasting Organic Food Prices: Testing and Evaluating Conditional Predictive Ability," 2005 Annual meeting, July 24-27, Providence, RI 19412, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  2. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CREATES Research Papers 2013-32, Department of Economics and Business Economics, Aarhus University.
  3. Ferraro, Domenico & Rogoff, Kenneth & Rossi, Barbara, 2011. "Can Oil Prices Forecast Exchange Rates?," CEPR Discussion Papers 8635, C.E.P.R. Discussion Papers.
  4. Clements, Michael P. & Galvão, Ana Beatriz, 2013. "Forecasting with vector autoregressive models of data vintages: US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 29(4), pages 698-714.
  5. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper Series 42_10, The Rimini Centre for Economic Analysis.
  6. Guidolin, Massimo & Timmermann, Allan, 2009. "Forecasts of US short-term interest rates: A flexible forecast combination approach," Journal of Econometrics, Elsevier, vol. 150(2), pages 297-311, June.
  7. Jaqueson Galimberti & Michele Berardi, 2014. "A Note on the Representative Adaptive Learning Algorithm," KOF Working papers 14-356, KOF Swiss Economic Institute, ETH Zurich.
  8. D'Agostino, Antonello & Domenico, Giannone & Surico, Paolo, 2006. "(Un)Predictability and Macroeconomic Stability," Research Technical Papers 5/RT/06, Central Bank of Ireland.
  9. Pablo Pincheira Brown & Álvaro García Marín, 2009. "Forecasting Inflation in Chile With an Accurate Benchmark," Working Papers Central Bank of Chile 514, Central Bank of Chile.
  10. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2009. "Non-linear predictability in stock and bond returns: when and where is it exploitable?," Working Papers 2008-010, Federal Reserve Bank of St. Louis.
  11. Pagano Patrizio & Pisani Massimiliano, 2009. "Risk-Adjusted Forecasts of Oil Prices," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-28, June.
  12. Javier Pereda, 2011. "Estimación de la tasa natural de interés para Perú: un enfoque financiero," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 429-459, octubre-d.
  13. Lorenzo Boldrini & Eric Hillebrand, 2015. "Supervision in Factor Models Using a Large Number of Predictors," CREATES Research Papers 2015-38, Department of Economics and Business Economics, Aarhus University.
  14. Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
  15. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
  16. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
  17. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2012. "Properties of foreign exchange risk premiums," Journal of Financial Economics, Elsevier, vol. 105(2), pages 279-310.
  18. Ruthira Naraidoo & Ivan Paya, 2010. "Forecasting Monetary Policy Rules in South Africa," Working Papers 189, Economic Research Southern Africa.
  19. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial Conditions and Density Forecasts for US Output and Inflation," Working Papers 715, Queen Mary University of London, School of Economics and Finance.
  20. Irving Arturo De Lira Salvatierra & Andrew J. Patton, 2013. "Dynamic Copula Models and High Frequency Data," Working Papers 13-28, Duke University, Department of Economics.
  21. Anatolyev, Stanislav & Gospodinov, Nikolay & Jamali, Ibrahim & Liu, Xiaochun, 2015. "Foreign exchange predictability during the financial crisis: implications for carry trade profitability," FRB Atlanta Working Paper 2015-6, Federal Reserve Bank of Atlanta.
  22. Carlos Capistrán, 2007. "Optimality Tests for Multi-Horizon Forecasts," Working Papers 2007-14, Banco de México.
  23. Milas, Costas & Rothman, Philip, 2008. "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
  24. Travis Berge & Òscar Jordà & Alan M. Taylor, 2011. "Currency Carry Trades," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 7(1), pages 357 - 388.
    • Travis Berge & Òscar Jordà & Alan M. Taylor, 2010. "Currency Carry Trades," NBER Chapters, in: NBER International Seminar on Macroeconomics 2010, pages 357-387 National Bureau of Economic Research, Inc.
  25. Carlos A. Medel Vera, 2011. "¿Akaike o Schwarz? ¿Cuál utilizar para predecir el PIB chileno?," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 591-615, octubre-d.
  26. repec:ctc:serie1:def10 is not listed on IDEAS
  27. Gonzalo Calvo & Miguel Ricaurte, 2012. "Indicadores Sintéticos para la Proyección de Imacec en Chile," Working Papers Central Bank of Chile 656, Central Bank of Chile.
  28. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
  29. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
  30. Zikes, Filip & Barunik, Jozef & Shenai, Nikhil, 2015. "Modeling and forecasting persistent financial durations," FinMaP-Working Papers 36, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
  31. Santiago Cajiao Raigosa & Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Pronósticos para una economía menos volátil: El caso colombiano," BORRADORES DE ECONOMIA 011252, BANCO DE LA REPÚBLICA.
  32. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
  33. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
  34. Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2012. "Realized stochastic volatility with leverage and long memory," CIRJE F-Series CIRJE-F-869, CIRJE, Faculty of Economics, University of Tokyo.
  35. Giacomini, Raffaella & Rossi, Barbara, 2008. "Forecast Comparisons in Unstable Environments," Working Papers 08-04, Duke University, Department of Economics.
  36. Roxana Halbleib & Valerie Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Papers ECARES ECARES 2011-002, ULB -- Universite Libre de Bruxelles.
  37. Barbara Rossi & Tatevik Sekhposyan, 2010. "Understanding Models' Forecasting Performance," Working Papers 10-56, Duke University, Department of Economics.
  38. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  39. Pirschel, Inske & Wolters, Maik, 2014. "Forecasting German key macroeconomic variables using large dataset methods," Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100587, Verein für Socialpolitik / German Economic Association.
  40. repec:dau:papers:123456789/13532 is not listed on IDEAS
  41. Marie Bessec, 2010. "Étalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture," Économie et Prévision, Programme National Persée, vol. 193(2), pages 77-99.
  42. Robert Engle & Neil Shephard & Kevin Shepphard, 2008. "Fitting vast dimensional time-varying covariance models," OFRC Working Papers Series 2008fe30, Oxford Financial Research Centre.
  43. Altug, Sumru & Çakmaklı, Cem, 2016. "Forecasting inflation using survey expectations and target inflation: Evidence for Brazil and Turkey," International Journal of Forecasting, Elsevier, vol. 32(1), pages 138-153.
  44. Jennifer Castle & David Hendry, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
  45. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Series Working Papers 533, University of Oxford, Department of Economics.
  46. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
  47. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
  48. Hännikäinen, Jari, 2014. "Zero lower bound, unconventional monetary policy and indicator properties of interest rate spreads," MPRA Paper 56737, University Library of Munich, Germany.
  49. Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Series Working Papers 458, University of Oxford, Department of Economics.
  50. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
  51. Pincheira, Pablo, 2013. "A Bunch of Models, a Bunch of Nulls and Inference about Predictive Ability," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 26-43, October.
  52. Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2008. "A panel data approach to economic forecasting: the bias-corrected average forecast," Economics Working Papers (Ensaios Economicos da EPGE) 668, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  53. Kawakami, Kei, 2013. "Conditional forecast selection from many forecasts: An application to the Yen/Dollar exchange rate," Journal of the Japanese and International Economies, Elsevier, vol. 28(C), pages 1-18.
  54. Pesaran, M.H. & Pick, A. & Timmermann, A., 2009. "Variable Selection and Inference for Multi-period Forecasting Problems," Cambridge Working Papers in Economics 0901, Faculty of Economics, University of Cambridge.
  55. Pablo Pincheira B., 2008. "Predictibilidad Encubierta en Economía: El Caso del Tipo de Cambio Nominal Chileno," Notas de Investigación Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 11(1), pages 137-142, April.
  56. Breitung, Jörg & Eickmeier, Sandra, 2005. "Dynamic factor models," Discussion Paper Series 1: Economic Studies 2005,38, Deutsche Bundesbank, Research Centre.
  57. repec:fgv:epgewp:753 is not listed on IDEAS
  58. Diks, Cees & Panchenko, Valentyn & Sokolinskiy, Oleg & van Dijk, Dick, 2014. "Comparing the accuracy of multivariate density forecasts in selected regions of the copula support," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 79-94.
  59. Francesco Ravazzolo & Philip Rothman, 2010. "Oil and US GDP: A real-time out-of-sample examination," Working Paper 2010/18, Norges Bank.
  60. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
  61. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
  62. Jeroen Rombouts & Lars Peter Stentoft & Francesco Violente, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average Options," CIRANO Working Papers 2012s-05, CIRANO.
  63. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
  64. Medel, Carlos, 2015. "Inflation Dynamics and the Hybrid Neo Keynesian Phillips Curve: The Case of Chile," MPRA Paper 62609, University Library of Munich, Germany.
  65. Mike Buckle & Jing Chen & Julian Williams, 2014. "How Predictable Are Equity Covariance Matrices? Evidence from High‐Frequency Data for Four Markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 542-557, November.
  66. Avino, Davide & Nneji, Ogonna, 2012. "Are CDS spreads predictable? An analysis of linear and non-linear forecasting models," MPRA Paper 42848, University Library of Munich, Germany.
  67. Teodosio Perez-Amaral & Giampiero M. Gallo & Halbert L. White, 2003. "A Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Econometrics Working Papers Archive wp2003_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  68. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2013. "Predicting Covariance Matrices with Financial Conditions Indexes," Tinbergen Institute Discussion Papers 13-113/III, Tinbergen Institute.
  69. Maria Gonzalez-Perez & Alfonso Novales, 2011. "The information content in a volatility index for Spain," SERIEs, Spanish Economic Association, vol. 2(2), pages 185-216, June.
  70. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
  71. Gianluca Cubadda & Barbara Guardabascio, 2010. "A Medium-N Approach to Macroeconomic Forecasting," CEIS Research Paper 176, Tor Vergata University, CEIS, revised 09 Dec 2010.
  72. repec:hal:journl:peer-00834423 is not listed on IDEAS
  73. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
  74. Pablo Pincheira & Carlos A. Medel, 2012. "Forecasting Inflation with a Simple and Accurate Benchmark: a Cross-Country Analysis," Working Papers Central Bank of Chile 677, Central Bank of Chile.
  75. Roque Montero & Javier García-Cicco, 2012. "Modelo y Pronóstico del Precio del Cobre: Un Enfoque de Cambio de Regímenes," Notas de Investigación Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 15(2), pages 099-116, August.
  76. Gary Koop & Simon M. Potter, 2003. "Forecasting in large macroeconomic panels using Bayesian Model Averaging," Staff Reports 163, Federal Reserve Bank of New York.
  77. Medel, Carlos A., 2012. "How informative are in-sample information criteria to forecasting? the case of Chilean GDP," MPRA Paper 35949, University Library of Munich, Germany.
  78. Kees E. Bouwman & Elvira Sojli & Wing Wah Tham, 2012. "Aggregate Stock Market Illiquidity and Bond Risk Premia," Tinbergen Institute Discussion Papers 12-140/IV/DSF46, Tinbergen Institute.
  79. Carlo A. Favero & Arie E. Gozluklu & Haoxi Yang, 2011. "Demographics and The Behaviour of Interest Rates," Working Papers 388, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  80. Florackis, Chris & Giorgioni, Gianluigi & Kostakis, Alexandros & Milas, Costas, 2014. "On stock market illiquidity and real-time GDP growth," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 210-229.
  81. Döpke, Jörg & Hartmann, Daniel & Pierdzioch, Christian, 2005. "Forecasting stock market volatility with macroeconomic variables in real time," Discussion Paper Series 2: Banking and Financial Studies 2006,01, Deutsche Bundesbank, Research Centre.
  82. Stefania D'Amico, 2005. "Density selection and combination under model ambiguity: an application to stock returns," Finance and Economics Discussion Series 2005-09, Board of Governors of the Federal Reserve System (U.S.).
  83. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
  84. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2013. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," CEPR Discussion Papers 9313, C.E.P.R. Discussion Papers.
  85. Pablo Pincheira B. & Nicolás Fernández, 2011. "Jaque Mate a las Proyecciones de Consenso," Working Papers Central Bank of Chile 630, Central Bank of Chile.
  86. Euler Pereira G. de Mello & Francisco Marcos R. Figueiredo, 2014. "Assessing the Short-term Forecasting Power of Confidence Indices," Working Papers Series 371, Central Bank of Brazil, Research Department.
  87. Christian Dreger & Jürgen Wolters, 2010. "Money Demand and the Role of Monetary Indicators in Forecasting Euro Area Inflation," Discussion Papers of DIW Berlin 1064, DIW Berlin, German Institute for Economic Research.
  88. Hännikäinen, Jari, 2014. "Multi-step forecasting in the presence of breaks," MPRA Paper 55816, University Library of Munich, Germany.
  89. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
  90. Ghent, Andra C., 2009. "Comparing DSGE-VAR forecasting models: How big are the differences?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 864-882, April.
  91. Carriero, A. & Kapetanios, G. & Marcellino, M., 2009. "Forecasting exchange rates with a large Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
  92. Calhoun, Gray, 2014. "Out-Of-Sample Comparisons of Overfit Models," Staff General Research Papers 32462, Iowa State University, Department of Economics.
  93. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
  94. Banbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
  95. Ruthira Naraidoo & Kasai Ndahiriwe, 2010. "Financial asset prices, linear and nonlinear policy rules. An In-sample assessment of the reaction function of the South African Reserve Bank," Working Papers 201006, University of Pretoria, Department of Economics.
  96. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Journal of Econometrics, Elsevier, vol. 163(2), pages 215-230, August.
  97. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  98. Nikolsko-Rzhevskyy, Alex & Prodan, Ruxandra, 2012. "Markov switching and exchange rate predictability," International Journal of Forecasting, Elsevier, vol. 28(2), pages 353-365.
  99. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank, Research Centre.
  100. Eran Raviv, 2013. "Prediction Bias Correction for Dynamic Term Structure Models," Tinbergen Institute Discussion Papers 13-041/III, Tinbergen Institute.
  101. repec:hal:journl:peer-00844809 is not listed on IDEAS
  102. Veiga, Helena & Bretó, Carles, 2011. "Forecasting volatility: does continuous time do better than discrete time?," DES - Working Papers. Statistics and Econometrics. WS ws112518, Universidad Carlos III de Madrid. Departamento de Estadística.
  103. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
  104. Todd E. Clark & Michael W. McCracken, 2009. "Nested forecast model comparisons: a new approach to testing equal accuracy," Research Working Paper RWP 09-11, Federal Reserve Bank of Kansas City.
  105. Garratt, Anthony & Mitchell, James & Vahey, Shaun, 2010. "Measuring Output Gap Uncertainty," CEPR Discussion Papers 7742, C.E.P.R. Discussion Papers.
  106. Tamara Burdisso & Eduardo Ariel Corso, 2011. "Incertidumbre y dolarización de cartera: el caso argentino en el último medio siglo," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 461-515, octubre-d.
  107. Marco Aiolfi & Carlo Ambrogio Favero, . "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  108. Chu, Ba, 2011. "Recovering copulas from limited information and an application to asset allocation," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1824-1842, July.
  109. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
  110. Giacomini, Raffaella & Ragusa, Giuseppe, 2011. "Incorporating theoretical restrictions into forecasting by projection methods," CEPR Discussion Papers 8604, C.E.P.R. Discussion Papers.
  111. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
  112. Mihaylov, George & Cheong, Chee Seng & Zurbruegg, Ralf, 2015. "Can security analyst forecasts predict gold returns?," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 237-246.
  113. Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
  114. Pesaran, M. Hashem & Pick, Andreas & Timmermann, Allan, 2011. "Variable selection, estimation and inference for multi-period forecasting problems," Journal of Econometrics, Elsevier, vol. 164(1), pages 173-187, September.
  115. Giovanni Calice & Christos Ioannidis & Julian Williams, 2011. "Credit Derivatives and the Default Risk of Large Complex Financial Institutions," CESifo Working Paper Series 3583, CESifo Group Munich.
  116. Peter Reinhard Hansen & Allan Timmermann, 2012. "Equivalence Between Out-of-Sample Forecast Comparisons and Wald Statistics," CREATES Research Papers 2012-45, Department of Economics and Business Economics, Aarhus University.
  117. Carlos Medel, 2012. "¿Akaike o Schwarz? ¿Cuál elegir para Predecir el PIB Chileno?," Working Papers Central Bank of Chile 658, Central Bank of Chile.
  118. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
  119. Liu, Xiaochun, 2015. "Modeling time-varying skewness via decomposition for out-of-sample forecast," International Journal of Forecasting, Elsevier, vol. 31(2), pages 296-311.
  120. Galbraith, John W. & KI[#x1e63]Inbay, Turgut, 2005. "Content horizons for conditional variance forecasts," International Journal of Forecasting, Elsevier, vol. 21(2), pages 249-260.
  121. Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
  122. Michael P. Clements & Ana Beatriz Galvão, 2011. "Improving Real-time Estimates of Output Gaps and Inflation Trends with Multiple-vintage Models," Working Papers 678, Queen Mary University of London, School of Economics and Finance.
  123. Clark, Todd E. & Doh, Taeyoung, 2014. "Evaluating alternative models of trend inflation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 426-448.
  124. Osmani Teixeira de Carvalho Guillén & Alain Hecq & João Victor Issler & Diogo Saraiva, 2013. "Time Series under Present-Value-Model Short- and Long-run Co-movement Restrictions," Working Papers Series 330, Central Bank of Brazil, Research Department.
  125. Dijk, D. van & Diks, C.G.H. & Panchenko, V., 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," CeNDEF Working Papers 08-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  126. John Y. Campbell & Samuel B. Thompson, 2005. "Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?," Harvard Institute of Economic Research Working Papers 2084, Harvard - Institute of Economic Research.
  127. Ricardo Gimeno & José Manuel Marqués-Sevillano, 2009. "Incertidumbre y el precio del riesgo en un proceso de convergencia nominal," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 451-489, octubre-d.
  128. Chevillon, Guillaume, 2009. "Multi-step forecasting in emerging economies: An investigation of the South African GDP," International Journal of Forecasting, Elsevier, vol. 25(3), pages 602-628, July.
  129. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2014. "Does the Macroeconomy Predict UK Asset Returns in a Nonlinear Fashion? Comprehensive Out-of-Sample Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(4), pages 510-535, 08.
  130. Juan Díaz Maureira & Gustavo Leyva Jiménez, 2009. "Proyección de la inflación chilena en tiempos difíciles," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 491-522, octubre-d.
  131. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
  132. Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 1106, University of Nevada, Las Vegas , Department of Economics.
  133. Boriss Siliverstovs & Kinstantin Kholodilim, 2009. "On selection of components for a diffusion index model: it's not the size, it's how you use it," Applied Economics Letters, Taylor & Francis Journals, vol. 16(12), pages 1249-1254.
  134. Gubanova, Tatiana & Lohr, Luanne & Park, Timothy A., 2005. "Forecasting Organic Food Prices: Emerging Methods for Testing and Evaluating Conditional Predictive Ability," 2005 Conference, April 18-19, 2005, St. Louis, Missouri 19045, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
  135. Abdymomunov, Azamat, 2013. "Predicting output using the entire yield curve," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 333-344.
  136. Robinson Durán & Evelyn Garrido & Carolina Godoy & Juan de Dios Tena, 2012. "Predicción de la inflación en México con modelos desagregados por componente," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 27(1), pages 133-167.
  137. Fawcett, Nicholas & Koerber, Lena & Masolo, Riccardo & Waldron, Matthew, 2015. "Evaluating UK point and density forecasts from an estimated DSGE model: the role of off-model information over the financial crisis," Bank of England working papers 538, Bank of England.
  138. Medel, Carlos A., 2015. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," MPRA Paper 67081, University Library of Munich, Germany.
  139. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
  140. Òscar Jordà & Alan M. Taylor, 2009. "The Carry Trade and Fundamentals: Nothing to Fear But FEER Itself," NBER Working Papers 15518, National Bureau of Economic Research, Inc.
  141. Arbués, Ignacio, 2013. "Determining the MSE-optimal cross section to forecast," Journal of Econometrics, Elsevier, vol. 175(2), pages 61-70.
  142. Chen Xilong & Ghysels Eric & Wang Fangfang, 2011. "HYBRID GARCH Models and Intra-Daily Return Periodicity," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-28, February.
  143. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
  144. Oh, Dong Hwan & Patton, Andrew J., 2015. "High-Dimensional Copula-Based Distributions with Mixed Frequency Data," Finance and Economics Discussion Series 2015-50, Board of Governors of the Federal Reserve System (U.S.).
  145. Chevillon, Guillaume & Mavroeidis, Sophocles, 2011. "Learning generates Long Memory," ESSEC Working Papers WP1113, ESSEC Research Center, ESSEC Business School.
  146. Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.
  147. Ida Wolden Bache & James Mitchell & Francesco Ravazzolo & Shaun P. Vahey, 2009. "Macro modelling with many models," Working Paper 2009/15, Norges Bank.
  148. Gadea Rivas, Maria Dolores & Pérez-Quirós, Gabriel, 2012. "The failure to predict the Great Recession. The failure of academic economics? A view focusing on the role of credit," CEPR Discussion Papers 9269, C.E.P.R. Discussion Papers.
  149. Jian Wang & Jason J. Wu, 2008. "The Taylor rule and forecast intervals for exchange rates," Globalization and Monetary Policy Institute Working Paper 22, Federal Reserve Bank of Dallas.
  150. Ruiz, Esther & Nogales, Francisco J. & Santos, André A. P., 2009. "Comparing univariate and multivariate models to forecast portfolio value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws097222, Universidad Carlos III de Madrid. Departamento de Estadística.
  151. Haroon Mumtaz & Nitin Kumar, 2012. "An application of data-rich environment for policy analysis of the Indian economy," Joint Research Papers 2, Centre for Central Banking Studies, Bank of England.
  152. Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K, 2015. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," CEPR Discussion Papers 10362, C.E.P.R. Discussion Papers.
  153. Pablo Pincheira, 2010. "A Real Time Evaluation of the Central Bank of Chile GDP Growth Forecasts," Money Affairs, Centro de Estudios Monetarios Latinoamericanos, vol. 0(1), pages 37-73, January-J.
  154. Bec, Frédérique & Gollier, Christian, 2014. "Cyclicality and term structure of Value-at-Risk within a threshold autoregression setup," TSE Working Papers 14-523, Toulouse School of Economics (TSE).
  155. Bouwman, Kees E. & Jacobs, Jan P.A.M., 2005. "Forecasting with real-time macroeconomic data: the ragged-edge problem and revisions," CCSO Working Papers 200505, University of Groningen, CCSO Centre for Economic Research.
  156. Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Paper 1120, Federal Reserve Bank of Cleveland.
  157. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2011. "Scoring rules and survey density forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 379-393.
  158. Todd E. Clark & Michael W. McCracken, 2008. "Improving forecast accuracy by combining recursive and rolling forecasts," Working Papers 2008-028, Federal Reserve Bank of St. Louis.
  159. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
  160. Chudik, Alexander & Pesaran, Hashem, 2009. "Infinite-dimensional VARs and factor models," Working Paper Series 0998, European Central Bank.
  161. Kaminska, Iryna & Roberts-Sklar, Matt, 2015. "A global factor in variance risk premia and local bond pricing," Bank of England working papers 576, Bank of England.
  162. João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Society for Computational Economics, vol. 46(1), pages 65-82, June.
  163. Claus, Edda & Lucey, Brian M., 2012. "Equity market integration in the Asia Pacific region: Evidence from discount factors," Research in International Business and Finance, Elsevier, vol. 26(2), pages 137-163.
  164. Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo Group Munich.
  165. Jari Hännikäinen, 2016. "The mortgage spread as a predictor of real-time economic activity," Applied Economics Letters, Taylor & Francis Journals, vol. 23(2), pages 112-116, February.
  166. Hännikäinen, Jari, 2016. "When does the yield curve contain predictive power? Evidence from a data-rich environment," MPRA Paper 70489, University Library of Munich, Germany.
  167. Lorenzo Boldrini & Eric Hillebrand, 2015. "The Forecasting Power of the Yield Curve, a Supervised Factor Model Approach," CREATES Research Papers 2015-39, Department of Economics and Business Economics, Aarhus University.
  168. Jung, Alexander & El-Shagi, Makram & Giesen, Sebastian, 2013. "Does Central Bank Staff Beat Private Forecasters?," Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79925, Verein für Socialpolitik / German Economic Association.
  169. Philippe Mueller & Mikhail Chernov, 2008. "The Term Structure of Inflation Expectations," 2008 Meeting Papers 346, Society for Economic Dynamics.
  170. Katja Drechsel & Rolf Scheufele, 2010. "Should We Trust in Leading Indicators? Evidence from the Recent Recession," IWH Discussion Papers 10, Halle Institute for Economic Research.
  171. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  172. Elena Andreou & Constantinos Kourouyiannis & Andros Kourtellos, 2012. "Volatility Forecast Combinations using Asymmetric Loss Functions," University of Cyprus Working Papers in Economics 07-2012, University of Cyprus Department of Economics.
  173. Gabriel Rodríguez, 2016. " Modelando la volatilidad de los mercados bursátiles y cambiarios en América Latina: Aplicación empírica de un modelo de cambios de nivel aleatorios y larga memoria genuina," Documentos de Trabajo / Working Papers 2016-416, Departamento de Economía - Pontificia Universidad Católica del Perú.
  174. Audrino, Francesco & Hu, Yujia, 2011. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Economics Working Paper Series 1138, University of St. Gallen, School of Economics and Political Science.
  175. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial indicators and density forecasts for US output and inflation," Temi di discussione (Economic working papers) 977, Bank of Italy, Economic Research and International Relations Area.
  176. Jordà, Òscar & Marcellino, Massimiliano, 2008. "Path Forecast Evaluation," CEPR Discussion Papers 7009, C.E.P.R. Discussion Papers.
  177. Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
  178. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2015. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Tinbergen Institute Discussion Papers 15-140/III, Tinbergen Institute.
  179. Joëts, Marc, 2015. "Heterogeneous beliefs, regret, and uncertainty: The role of speculation in energy price dynamics," European Journal of Operational Research, Elsevier, vol. 247(1), pages 204-215.
  180. McMillan, David G., 2014. "Stock return, dividend growth and consumption growth predictability across markets and time: Implications for stock price movement," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 90-101.
  181. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
  182. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2010. "Properties of Foreign Exchange Risk Premia," MPRA Paper 21302, University Library of Munich, Germany.
  183. Travis J. Berge, 2011. "Forecasting disconnected exchange rates," Research Working Paper RWP 11-12, Federal Reserve Bank of Kansas City.
  184. Javier Contreras-Reyes & Wilfredo Palma, 2013. "Statistical analysis of autoregressive fractionally integrated moving average models in R," Computational Statistics, Springer, vol. 28(5), pages 2309-2331, October.
  185. Theodore M. Crone & N. Neil K. Khettry & Loretta J. Mester & Jason A. Novak, 2011. "Core measures of inflation as predictors of total inflation," Working Papers 11-24, Federal Reserve Bank of Philadelphia.
  186. Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015. "Generalised density forecast combinations," Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
  187. Cecilia Frale, . "Do Surveys Help in Macroeconomic Variables Disaggregation and Estimation?," Working Papers wp2008-2, Department of the Treasury, Ministry of the Economy and of Finance.
  188. Guillén, Osmani Teixeira & Hecq, Alain & Issler, João Victor & Saraiva, Diogo, 2015. "Forecasting multivariate time series under present-value model short- and long-run co-movement restrictions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 862-875.
  189. Rangan Gupta & Anandamayee Majumdar & Christian Pierdzioch & Mark Wohar, 2016. "Do Terror Attacks Predict Gold Returns? Evidence from a Quantile-Predictive-Regression Approach," Working Papers 201626, University of Pretoria, Department of Economics.
  190. Hajo Holzmann & Matthias Eulert, 2014. "The role of the information set for forecasting - with applications to risk management," Papers 1404.7653, arXiv.org.
  191. Kyungchul Song, 2009. "Testing Predictive Ability and Power Robustification," PIER Working Paper Archive 09-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  192. Matteo Luciani, 2011. "Forecasting with Approximate Dynamic Factor Models: the Role of Non-Pervasive Shocks," Working Papers ECARES ECARES 2011‐022, ULB -- Universite Libre de Bruxelles.
  193. LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," CORE Discussion Papers 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  194. Juan Carlos Pérez-Velasco Pavón, 2009. "Determinantes de la demanda por la denominación promedio de billete: el caso de México," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 523-548, octubre-d.
  195. Dr. James Mitchell, 2008. "Evaluating Density Forecasts: Forecast Combinations, Model Mixtures, Calibration and Sharpness," NIESR Discussion Papers 320, National Institute of Economic and Social Research.
  196. Mansoor Maitah & Daniel Toth & Elena Kuzmenko & Karel Šrédl & Helena Rezbová & Petra Šánová, 2016. "Forecast of Employment in Switzerland: The Macroeconomic View," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 132-138.
  197. Barrera, Carlos, 2013. "El sistema de predicción desagregada: Una evaluación de las proyecciones de inflación 2006-2011," Working Papers 2013-009, Banco Central de Reserva del Perú.
  198. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
  199. Nicholas Taylor, 2015. "Realized volatility forecasting in an international context," Applied Economics Letters, Taylor & Francis Journals, vol. 22(6), pages 503-509, April.
  200. Boriss Siliverstovs, 2013. "Do business tendency surveys help in forecasting employment?: A real-time evidence for Switzerland," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing,Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 129-151.
  201. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
  202. Travis J. Berge, 2013. "Predicting recessions with leading indicators: model averaging and selection over the business cycle," Research Working Paper RWP 13-05, Federal Reserve Bank of Kansas City.
  203. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
  204. Alexander Chudik & M. Hashem Pesaran, 2014. "Theory and Practice of GVAR Modeling," CESifo Working Paper Series 4807, CESifo Group Munich.
  205. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
  206. Sebastiano Manzan & Dawit Zerom, 2015. "Asymmetric Quantile Persistence and Predictability: the Case of US Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(2), pages 297-318, 04.
  207. Gael M. Martin & Andrew Reidy & Jill Wright, 2007. "Does the Option Market Produce Superior Forecasts of Noise-Corrected Volatility Measures?," Monash Econometrics and Business Statistics Working Papers 5/07, Monash University, Department of Econometrics and Business Statistics.
  208. Siem Jan Koopman & Rutger Lit, 2012. "A Dynamic Bivariate Poisson Model for Analysing and Forecasting Match Results in the English Premier League," Tinbergen Institute Discussion Papers 12-099/III, Tinbergen Institute.
  209. Marie Bessec & Julien Fouquau & Sophie Meritet, 2014. "Forecasting electricity spot prices using time-series models with a double temporal segmentation," Working Papers 2014-588, Department of Research, Ipag Business School.
  210. Marco Lombardi & Raphael A. Espinoza & Fabio Fornari, 2009. "The Role of Financial Variables in Predicting Economic Activity in the Euro Area," IMF Working Papers 09/241, International Monetary Fund.
  211. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
  212. Le, Van & Zurbruegg, Ralf, 2014. "Forecasting option smile dynamics," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 32-45.
  213. Georgios Tsiotas, 2009. "On the use of non-linear transformations in Stochastic Volatility models," Statistical Methods and Applications, Springer, vol. 18(4), pages 555-583, November.
  214. Pesaran, M Hashem & Timmermann, Allan G, 2004. "Small Sample Properties of Forecasts From Autoregressive Models Under Structural Breaks," CEPR Discussion Papers 4401, C.E.P.R. Discussion Papers.
  215. Cees Diks & Valentyn Panchenko & Oleg Sokolinskiy, & Dick van Dijk, 2013. "Comparing the Accuracy of Copula-Based Multivariate Density Forecasts in Selected Regions of Support," Tinbergen Institute Discussion Papers 13-061/III, Tinbergen Institute.
  216. Isao Ishida, 2005. "Scanning Multivariate Conditional Densities with Probability Integral Transforms," CARF F-Series CARF-F-045, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  217. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, Elsevier.
  218. Krenar Avdulaj & Jozef Barunik, 2013. "Can we still benefit from international diversification? The case of the Czech and German stock markets," Papers 1308.6120, arXiv.org, revised Sep 2013.
  219. Seiler, Christian & Heumann, Christian, 2013. "Microdata imputations and macrodata implications: Evidence from the Ifo Business Survey," Economic Modelling, Elsevier, vol. 35(C), pages 722-733.
  220. A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
  221. Hendry, David F & Hubrich, Kirstin, 2006. "Forecasting Economic Aggregates by Disaggregates," CEPR Discussion Papers 5485, C.E.P.R. Discussion Papers.
  222. Todd E. Clark & Kenneth D. West, 2005. "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference," NBER Technical Working Papers 0305, National Bureau of Economic Research, Inc.
  223. Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
  224. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
  225. Carriero, Andrea & Giacomini, Raffaella, 2011. "How useful are no-arbitrage restrictions for forecasting the term structure of interest rates?," Journal of Econometrics, Elsevier, vol. 164(1), pages 21-34, September.
  226. Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-921, CIRJE, Faculty of Economics, University of Tokyo.
  227. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
  228. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
  229. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
  230. Golinelli, Roberto & Parigi, Giuseppe, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
  231. Javier Contreras-Reyes & Byron Idrovo, 2011. "En busca de un modelo Benchmark univariado para predecir la tasa de desempleo," REVISTA CUADERNOS DE ECONOMÍA, UN - RCE - CID, December.
  232. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
  233. Steven Trypsteen, . "The Importance of a Time-Varying Variance and Cross-Country Interactions in Forecast Models," Discussion Papers 2014/15, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
  234. Marcelo Fernandes & Marcelo Cunha Medeiros & MArcelo Scharth, 2007. "Modeling and predicting the CBOE market volatility index," Textos para discussão 548, Department of Economics PUC-Rio (Brazil).
  235. Andrés Schneider, 2009. "Regímenes de flotación administrada: un enfoque de cartera," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 549-584, octubre-d.
  236. Meyer, Brent & Venkatu, Guhan, 2014. "Trimmed-Mean Inflation Statistics: Just Hit the One in the Middle," FRB Atlanta Working Paper 2014-3, Federal Reserve Bank of Atlanta.
  237. Barnichon, Regis & Garda, Paula, 2016. "Forecasting unemployment across countries: The ins and outs," European Economic Review, Elsevier, vol. 84(C), pages 165-183.
  238. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2015. "A real-time quantile-regression approach to forecasting gold returns under asymmetric loss," Resources Policy, Elsevier, vol. 45(C), pages 299-306.
  239. Krenar Avdulaj & Jozef Barunik, 2013. "Are benefits from oil - stocks diversification gone? New evidence from a dynamic copula and high frequency data," Papers 1307.5981, arXiv.org, revised Feb 2015.
  240. Ruiz, Esther & Hotta, Luiz & Almeida, Daniel De, 2015. "MGARCH models: tradeoff between feasibility and flexibility," DES - Working Papers. Statistics and Econometrics. WS ws1516, Universidad Carlos III de Madrid. Departamento de Estadística.
  241. Hofmann, Boris, 2008. "Do monetary indicators lead euro area inflation?," Working Paper Series 0867, European Central Bank.
  242. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
  243. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
  244. Kopoin, Alexandre & Moran, Kevin & Paré, Jean-Pierre, 2013. "Forecasting regional GDP with factor models: How useful are national and international data?," Economics Letters, Elsevier, vol. 121(2), pages 267-270.
  245. Medel, Carlos & Camilleri, Gilmour & Hsu, Hsiang-Ling & Kania, Stefan & Touloumtzoglou, Miltiadis, 2015. "Robustness in Foreign Exchange Rate Forecasting Models: Economics-based Modelling After the Financial Crisis," MPRA Paper 65290, University Library of Munich, Germany.
  246. Ibarra, Raul, 2012. "Do disaggregated CPI data improve the accuracy of inflation forecasts?," Economic Modelling, Elsevier, vol. 29(4), pages 1305-1313.
  247. Hännikäinen, Jari, 2015. "Selection of an estimation window in the presence of data revisions and recent structural breaks," MPRA Paper 66759, University Library of Munich, Germany.
  248. Andrea Betancor & Pablo Pincheira, 2008. "Forecasting Inflation Forecast Errors," Working Papers Central Bank of Chile 477, Central Bank of Chile.
  249. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
  250. Kozhan, Roman & Salmon, Mark, 2012. "The information content of a limit order book: The case of an FX market," Journal of Financial Markets, Elsevier, vol. 15(1), pages 1-28.
  251. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
  252. Javier García - Cicco & Roque Montero, 2011. "Modeling Copper Price: A Regime-Switching Approach," Working Papers Central Bank of Chile 613, Central Bank of Chile.
  253. Knüppel, Malte & Schultefrankenfeld, Guido, 2013. "The empirical (ir)relevance of the interest rate assumption for central bank forecasts," Discussion Papers 11/2013, Deutsche Bundesbank, Research Centre.
  254. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, Elsevier.
  255. Raffaella Giacomini & Ivana Komunjer, 2003. "Evaluation and Combination of Conditional Quantile Forecasts," Boston College Working Papers in Economics 571, Boston College Department of Economics.
  256. Marco Aiolfi & Marius Rodriguez & Allan Timmermann, 2010. "Understanding Analysts' Earnings Expectations: Biases, Nonlinearities, and Predictability," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 8(3), pages 305-334, Summer.
  257. Anthony H. Tu & Cathy Yi-Hsuan Chen, 2016. "What Derives the Bond Portfolio Value-at-Risk: Information Roles of Macroeconomic and Financial Stress Factors," SFB 649 Discussion Papers SFB649DP2016-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  258. Hecq Alain & Laurent Sébastien & Palm Franz, 2011. "Common intraday periodicity," Research Memorandum 010, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  259. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
  260. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
  261. Michael P. Clements & David F. Hendry, 2005. "Guest Editors' Introduction: Information in Economic Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 713-753, December.
  262. Wilmer Osvaldo Martínez-Rivera & Manuel Dario Hernández-Bejarano & Juan Manuel Julio-Román, 2014. "On Forecast Evaluation," Borradores de Economia 825, Banco de la Republica de Colombia.
  263. Ziegler, Christina & Eickmeier, Sandra, 2006. "How good are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Discussion Paper Series 1: Economic Studies 2006,42, Deutsche Bundesbank, Research Centre.
  264. Todd E. Clark & Michael W. McCracken, 2006. "Forecasting of small macroeconomic VARs in the presence of instabilities," Research Working Paper RWP 06-09, Federal Reserve Bank of Kansas City.
  265. Hofmann, Boris, 2006. "Do monetary indicators (still) predict euro area inflation?," Discussion Paper Series 1: Economic Studies 2006,18, Deutsche Bundesbank, Research Centre.
  266. Rocío Elizondo, 2013. "Forecasting the Term Structure of Interest Rates in Mexico Using an Affine Model," Working Papers 2013-03, Banco de México.
  267. Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2016. "Forecasting macroeconomic variables in data-rich environments," Economics Letters, Elsevier, vol. 138(C), pages 50-52.
  268. Pablo M. Pincheira & Carlos A. Medel, 2015. "Forecasting Inflation with a Simple and Accurate Benchmark: The Case of the US and a Set of Inflation Targeting Countries," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 2-29, January.
  269. José Julián Sidaoui & Carlos Capistrán & Daniel Chiquiar & Manuel Ramos Francia, 2009. "A Note on the Predictive Content of PPI over CPI Inflation: The Case of Mexico," Working Papers 2009-14, Banco de México.
  270. In Choi, 2013. "Model Selection for Factor Analysis: Some New Criteria and Performance Comparisons," Working Papers 1209, Research Institute for Market Economy, Sogang University.
  271. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
  272. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
  273. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
  274. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.
  275. Raúl Ibarra-Ramírez, 2010. "Forecasting Inflation in Mexico Using Factor Models: Do Disaggregated CPI Data Improve Forecast Accuracy?," Working Papers 2010-01, Banco de México.
  276. Sepideh Dolatabadi & Paresh Kumar Narayan & Morten Ørregaard Nielsen & Ke Xu, 2016. "Economic significance of commodity return forecasts from the fractionally cointegrated VAR model," Working Papers 1337, Queen's University, Department of Economics.
  277. Kei Kawakami, 2008. "Forecast Selection by Conditional Predictive Ability Tests: An Application to the Yen/Dollar Exchange Rate," Bank of Japan Working Paper Series 08-E-1, Bank of Japan.
  278. Neri, Marcelo Cortes, 2014. "Brazil's middle classes," Economics Working Papers (Ensaios Economicos da EPGE) 759, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  279. Dovern, Jonas & Ziegler, Christina, 2008. "Predicting growth rates and recessions : assessing US leading indicators under real-time conditions," Kiel Working Papers 1397, Kiel Institute for the World Economy (IfW).
  280. Artis, Michael J & Galvão, Ana Beatriz C & Marcellino, Massimiliano, 2003. "The Transmission Mechanism in a Changing World," CEPR Discussion Papers 4014, C.E.P.R. Discussion Papers.
  281. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
  282. Daniel Fernández, 2011. "Suficiencia del capital y previsiones de la banca uruguaya por su exposición al sector industrial," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 517-589, octubre-d.
  283. Idrovo Aguirre, Byron & Tejada, Mauricio, 2010. "Modelos de predicción para la inflación de Chile
    [Inflation forecast models for Chile]
    ," MPRA Paper 31586, University Library of Munich, Germany, revised 26 Mar 2010.
  284. Niels Haldrup & Oskar Knapik & Tommaso Proietti, 2016. "A generalized exponential time series regression model for electricity prices," CREATES Research Papers 2016-08, Department of Economics and Business Economics, Aarhus University.
  285. Mihaela Bratu, 2011. "The Assessement Of Uncertainty In Predictions Determined By The Variables Aggregation," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 2(13), pages 31.
  286. Markku Lanne & Jani Luoto & Henri Nyberg, 2014. "Is the Quantity Theory of Money Useful in Forecasting U.S. Inflation?," CREATES Research Papers 2014-26, Department of Economics and Business Economics, Aarhus University.
  287. Emanuel Kohlscheen & Fernando Avalos & Andreas Schrimpf, 2016. "When the walk is not random: commodity prices and exchange rates," BIS Working Papers 551, Bank for International Settlements.
  288. Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
  289. Samuel W. Malone & Robert B. Gramacy & Enrique ter Horst, 2016. "Timing Foreign Exchange Markets," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 15, March.
  290. : Arie E. Gozluklu, 2012. "Inflation, Stock Market and Long-Term Investors: Real Effects of Changing Demographics," Working Papers wpn12-06, Warwick Business School, Finance Group.
  291. Mariano, Roberto S. & Preve, Daniel, 2012. "Statistical tests for multiple forecast comparison," Journal of Econometrics, Elsevier, vol. 169(1), pages 123-130.
  292. Ghent, Andra, 2006. "Comparing Models of Macroeconomic Fluctuations: How Big Are the Differences?," MPRA Paper 180, University Library of Munich, Germany.
  293. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-54, December.
  294. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
  295. Todd E. Clark & Michael W. Mccracken, 2014. "Tests Of Equal Forecast Accuracy For Overlapping Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 415-430, 04.
  296. Gürkaynak, Refet S. & Kisacikoglu, Burçin & Rossi, Barbara, 2013. "Do DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?," CEPR Discussion Papers 9576, C.E.P.R. Discussion Papers.
  297. Gupta, Rangan & Steinbach, Rudi, 2013. "A DSGE-VAR model for forecasting key South African macroeconomic variables," Economic Modelling, Elsevier, vol. 33(C), pages 19-33.
  298. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A quantile-boosting approach to forecasting gold returns," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 38-55.
  299. El-Shagi, Makram & Giesen, Sebastian & Jung, Alexander, 2014. "Does the federal reserve staff still beat private forecasters?," Working Paper Series 1635, European Central Bank.
  300. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Causality and predictability in distribution: The ethanol–food price relation revisited," Energy Economics, Elsevier, vol. 42(C), pages 152-160.
  301. Boriss Siliverstovs, 2015. "Dissecting Models’ Forecasting Performance," KOF Working papers 15-397, KOF Swiss Economic Institute, ETH Zurich.
  302. Götz Thomas B. & Hecq Alain & Urbain Jean-Pierre, 2012. "Real-Time Forecast Density Combinations (Forecasting US GDP Growth Using Mixed-Frequency Data)," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  303. Giacomini, Raffaella, 2014. "Economic theory and forecasting: lessons from the literature," CEPR Discussion Papers 10201, C.E.P.R. Discussion Papers.
  304. Ard Reijer, 2013. "Forecasting Dutch GDP and inflation using alternative factor model specifications based on large and small datasets," Empirical Economics, Springer, vol. 44(2), pages 435-453, April.
  305. Dotsey, Michael & Fujita, Shigeru & Stark, Tom, 2015. "Do Phillips curves conditionally help to forecast inflation?," Working Papers 15-16, Federal Reserve Bank of Philadelphia.
  306. Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques," CREATES Research Papers 2011-27, Department of Economics and Business Economics, Aarhus University.
  307. Pablo Pincheira, 2012. "A Joint Test of Superior Predictive Ability for Chilean Inflation Forecasts," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 15(3), pages 04-39, December.
  308. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
  309. Krüger, Fabian & Clark, Todd E. & Ravazzolo, Francesco, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113077, Verein für Socialpolitik / German Economic Association.
  310. Francesco Ravazzolo & Shaun P Vahey, 2010. "Measuring Core Inflation in Australia with Disaggregate Ensembles," RBA Annual Conference Volume, in: Renée Fry & Callum Jones & Christopher Kent (ed.), Inflation in an Era of Relative Price Shocks Reserve Bank of Australia.
  311. Niels S. Hansen & Asger Lunde, 2013. "Analyzing Oil Futures with a Dynamic Nelson-Siegel Model," CREATES Research Papers 2013-36, Department of Economics and Business Economics, Aarhus University.
  312. Veiga, Helena & Ruiz, Esther & Mao, Xiuping, 2013. "One for all : nesting asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws131110, Universidad Carlos III de Madrid. Departamento de Estadística.
  313. Pablo Pincheira & Roberto Álvarez, 2012. "Evaluation of Short Run Inflation Forecasts in Chile," Working Papers Central Bank of Chile 674, Central Bank of Chile.
  314. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, Elsevier.
  315. Manzan, Sebastiano & Zerom, Dawit, 2009. "Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?," MPRA Paper 14387, University Library of Munich, Germany.
  316. Meyer, Brent & Tasci, Murat, 2015. "Lessons for forecasting unemployment in the United States: use flow rates, mind the trend," FRB Atlanta Working Paper 2015-1, Federal Reserve Bank of Atlanta.
  317. Sergii Pypko, 2015. "Volatility Forecast in Crises and Expansions," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 8(3), pages 311-336, August.
  318. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  319. Ferraro, Domenico & Rogoff, Kenneth & Rossi, Barbara, 2015. "Can oil prices forecast exchange rates? An empirical analysis of the relationship between commodity prices and exchange rates," Journal of International Money and Finance, Elsevier, vol. 54(C), pages 116-141.
  320. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 8, February.
  321. Costas Milas & Phil Rothman, 2005. "Multivariate STAR Unemployment Rate Forecasts," Econometrics 0502010, EconWPA.
  322. Michele Berardi & Jaqueson K. Galimberti, 2015. "Empirical Calibration of Adaptive Learning," KOF Working papers 15-392, KOF Swiss Economic Institute, ETH Zurich.
  323. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
  324. Paul D. McNelis & Salih N. Neftci, 2006. "Renminbi Revaluation, Euro Appreciation and Chinese Markets: What Can We Learn From Data?," Working Papers 012006, Hong Kong Institute for Monetary Research.
  325. Manuel Landajo & Javier de Andrés & Pedro Lorca, 2008. "Measuring firm performance by using linear and non-parametric quantile regressions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(2), pages 227-250.
  326. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
  327. Byun, Sung Je, 2016. "The usefulness of cross-sectional dispersion for forecasting aggregate stock price volatility," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 162-180.
  328. Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.