IDEAS home Printed from https://ideas.repec.org/p/fip/fedawp/2015-01.html
   My bibliography  Save this paper

Lessons for forecasting unemployment in the United States: use flow rates, mind the trend

Author

Listed:
  • Brent Meyer
  • Murat Tasci

Abstract

This paper evaluates the ability of autoregressive models, professional forecasters, and models that incorporate unemployment flows to forecast the unemployment rate. We pay particular attention to flows-based approaches?the more reduced-form approach of Barnichon and Nekarda (2012) and the more structural method in Tasci (2012)?to generalize whether data on unemployment flows are useful in forecasting the unemployment rate. We find that any approach that considers unemployment inflow and outflow rates performs well in the near term. Over longer forecast horizons, Tasci (2012) appears to be a useful framework even though it was designed to be mainly a tool to uncover long-run labor market dynamics such as the \"natural\" rate. Its usefulness is amplified at specific points in the business cycle when the unemployment rate is away from the longer-run natural rate. Judgmental forecasts from professional economists tend to be the single best predictor of future unemployment rates. However, combining those guesses with flows-based approaches yields significant gains in forecasting accuracy.

Suggested Citation

  • Brent Meyer & Murat Tasci, 2015. "Lessons for forecasting unemployment in the United States: use flow rates, mind the trend," FRB Atlanta Working Paper 2015-1, Federal Reserve Bank of Atlanta.
  • Handle: RePEc:fip:fedawp:2015-01
    as

    Download full text from publisher

    File URL: https://www.frbatlanta.org/-/media/Documents/research/publications/wp/2015/wp1501.pdf?la=en
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clark, Peter K., 1989. "Trend reversion in real output and unemployment," Journal of Econometrics, Elsevier, vol. 40(1), pages 15-32, January.
    2. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    3. Murat Tasci, 2012. "The Ins and Outs of Unemployment in the Long Run: Unemployment Flows and the Natural Rate," Koç University-TUSIAD Economic Research Forum Working Papers 1233, Koc University-TUSIAD Economic Research Forum.
    4. Gary Solon & Ryan Michaels & Michael W. L. Elsby, 2009. "The Ins and Outs of Cyclical Unemployment," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 84-110, January.
    5. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    6. Regis Barnichon & Christopher J. Nekarda, 2012. "The Ins and Outs of Forecasting Unemployment: Using Labor Force Flows to Forecast the Labor Market," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(2 (Fall)), pages 83-131.
    7. Philip Rothman, 1998. "Forecasting Asymmetric Unemployment Rates," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 164-168, February.
    8. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    9. Mortensen, Dale & Pissarides, Christopher, 2011. "Job Creation and Job Destruction in the Theory of Unemployment," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 1-19.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    12. Shigeru Fujita & Garey Ramey, 2009. "The Cyclicality Of Separation And Job Finding Rates," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 415-430, May.
    13. Robert Shimer, 2005. "The Cyclical Behavior of Equilibrium Unemployment and Vacancies," American Economic Review, American Economic Association, vol. 95(1), pages 25-49, March.
    14. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    15. Anne E. Polivka & Stephen M. Miller, 1998. "The CPS after the Redesign: Refocusing the Economic Lens," NBER Chapters, in: Labor Statistics Measurement Issues, pages 249-289, National Bureau of Economic Research, Inc.
    16. Katharine G. Abraham & Robert Shimer, 2001. "Changes in Unemployment Duration and Labor Force Attachment," NBER Working Papers 8513, National Bureau of Economic Research, Inc.
    17. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard K. Crump & Stefano Eusepi & Marc Giannoni & Aysegul Sahin, 2019. "A Unified Approach to Measuring u," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 50(1 (Spring), pages 143-238.
    2. Gonul Sengul & Murat Tasci, 2014. "Unemployment Flows, Participation and the Natural Rate for Turkey," Working Papers 1435, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    3. Sengul, Gonul & Tasci, Murat, 2020. "Unemployment flows, participation, and the natural rate of unemployment: Evidence from turkey," Journal of Macroeconomics, Elsevier, vol. 64(C).
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Barnichon, Regis & Garda, Paula, 2016. "Forecasting unemployment across countries: The ins and outs," European Economic Review, Elsevier, vol. 84(C), pages 165-183.
    6. Ayşegül Şahin & Murat Tasci & Jin Yan, 2021. "Unemployment in the Time of COVID-19: A Flow-Based Approach to Real-time Unemployment Projections," NBER Working Papers 28445, National Bureau of Economic Research, Inc.
    7. Brent Meyer & Guhan Venkatu, 2012. "Trimmed-mean inflation statistics: just hit the one in the middle," Working Papers (Old Series) 1217, Federal Reserve Bank of Cleveland.
    8. Gábor Pintér, 2019. "House Prices and Job Losses," The Economic Journal, Royal Economic Society, vol. 129(618), pages 991-1013.
    9. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
    10. Rogerson, Richard & Shimer, Robert, 2011. "Search in Macroeconomic Models of the Labor Market," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 7, pages Pages: 61, Elsevier.
    11. Murat Tasci, 2010. "The ins and outs of unemployment in the long run: a new estimate for the natural rate?," Working Papers (Old Series) 1017, Federal Reserve Bank of Cleveland.
    12. Pawel M. Krolikowski & Kurt G. Lunsford, 2024. "Advance layoff notices and aggregate job loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 462-480, April.
    13. Thomas B. King, 2005. "Labor productivity and job-market flows: trends, cycles, and correlations," Supervisory Policy Analysis Working Papers 2005-04, Federal Reserve Bank of St. Louis.
    14. Robert Shimer, 2012. "Reassessing the Ins and Outs of Unemployment," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 127-148, April.
    15. Shibata, Ippei, 2022. "Reassessing classification errors in the analysis of labor market dynamics," Labour Economics, Elsevier, vol. 78(C).
    16. Euiyoung Jung, 2021. "Rigid Wages, Endogenous Job Destruction, and Destabilizing Spirals," Working Papers halshs-03213006, HAL.
    17. Shigeru Fujita, 2011. "Dynamics of worker flows and vacancies: evidence from the sign restriction approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 89-121, January/F.
    18. Borowczyk-Martins, Daniel & Lalé, Etienne, 2020. "The ins and outs of involuntary part-time employment," Labour Economics, Elsevier, vol. 67(C).
    19. Isabel Cairó & Tomaz Cajner, 2018. "Human Capital and Unemployment Dynamics: Why More Educated Workers Enjoy Greater Employment Stability," Economic Journal, Royal Economic Society, vol. 128(609), pages 652-682, March.
    20. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.

    More about this item

    Keywords

    unemployment forecasting; natural rates; unemployment flows; labor market search;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedawp:2015-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rob Sarwark (email available below). General contact details of provider: https://edirc.repec.org/data/frbatus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.