IDEAS home Printed from https://ideas.repec.org/p/rbp/wpaper/2013-009.html
   My bibliography  Save this paper

El sistema de predicción desagregada: Una evaluación de las proyecciones de inflación 2006-2011

Author

Listed:
  • Barrera, Carlos

    (Banco Central de Reserva del Perú)

Abstract

El presente estudio describe las características del Sistema de Predicción Desagregada (SPD) en el marco de la literatura y presenta los resultados de una evaluación de sus capacidades predictivas en términos de las variaciones del índice de precios al consumidor de Lima Metropolitana (IPC), del índice de precios subyacente y de su complemento, el índice de precios no subyacente para el periodo julio 2006 - mayo 2011. La evaluación ex post considera las diferencias no sólo entre las principales especificaciones multi-ecuacionales en el SPD sino también respecto a un modelo auto-regresivo uni-ecuacional para el (sub-)agregado que corresponda. Esta evaluación se realiza en dos versiones: (1) la versión estática de la evaluación, que calcula la raíz del error cuadrático medio (RECM) sobre la base de la muestra completa de errores de predicción para cada horizonte h, RECM(h), y (2) la versión dinámica de la evaluación, que la calcula sobre la base de sub-muestras de errores para un horizonte h prefijado en ventanas móviles de ancho fijo con el periodo τ como cota superior, RECM(τ; h prefijado). En línea con la literatura, la evaluación ex post estática muestra la conveniencia de desagregar y predecir con modelos multi-ecuacionales frente a la alternativa de no desagregar y predecir con modelos uni-ecuacionales. El principal resultado de la evaluación ex post dinámica es la presencia de cruces en su evolución temporal, en los que un grupo de modelos con un buen [no tan buen] desempeño previo pasa luego a tener uno no tan bueno [bueno] (Aiolfi & Timmermann (2006)), lo que justifica el uso de proyecciones combinadas.

Suggested Citation

  • Barrera, Carlos, 2013. "El sistema de predicción desagregada: Una evaluación de las proyecciones de inflación 2006-2011," Working Papers 2013-009, Banco Central de Reserva del Perú.
  • Handle: RePEc:rbp:wpaper:2013-009
    as

    Download full text from publisher

    File URL: http://www.bcrp.gob.pe/docs/Publicaciones/Documentos-de-Trabajo/2013/documento-de-trabajo-09-2013.pdf
    File Function: Application/pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
    2. Frédérick Demers & Annie De Champlain, 2005. "Forecasting Core Inflation in Canada: Should We Forecast the Aggregate or the Components?," Staff Working Papers 05-44, Bank of Canada.
    3. Hendry, David F & Hubrich, Kirstin, 2006. "Forecasting Economic Aggregates by Disaggregates," CEPR Discussion Papers 5485, C.E.P.R. Discussion Papers.
    4. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    5. Hashem M. Pesaran & Ron P. Smith, 2011. "Beyond the DSGE Straitjacket," CESifo Working Paper Series 3447, CESifo Group Munich.
    6. Eliana Gómez & Miguel I. Gómez & Luis F.Melo & José Luis Torres, 2006. "Forecasting Food Price Inflation in Developing Countries with Inflation Targeting Regimes: the Colombian Case," Borradores de Economia 409, Banco de la Republica de Colombia.
    7. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    8. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    9. Rose, David E., 1977. "Forecasting aggregates of independent Arima processes," Journal of Econometrics, Elsevier, vol. 5(3), pages 323-345, May.
    10. Mankiw, N Gregory, 1990. "A Quick Refresher Course in Macroeconomics," Journal of Economic Literature, American Economic Association, vol. 28(4), pages 1645-1660, December.
    11. Pesaran, M Hashem & Pierse, Richard G & Kumar, Mohan S, 1989. "Econometric Analysis of Aggregation in the Context of Linear Prediction Models," Econometrica, Econometric Society, vol. 57(4), pages 861-888, July.
    12. Ralf BRUEGGEMANN & Hans-Martin KROLZIG & Helmut LUETKEPOHL, 2002. "Comparison of Model Reduction Methods for VAR Processes," Economics Working Papers ECO2002/19, European University Institute.
    13. Granger, C. W. J., 1987. "Implications of Aggregation with Common Factors," Econometric Theory, Cambridge University Press, vol. 3(02), pages 208-222, April.
    14. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    15. Lutkepohl, Helmut, 1984. "Linear transformations of vector ARMA processes," Journal of Econometrics, Elsevier, vol. 26(3), pages 283-293, December.
    16. Hashem Pesaran, M., 2003. "Aggregation of linear dynamic models: an application to life-cycle consumption models under habit formation," Economic Modelling, Elsevier, vol. 20(2), pages 383-415, March.
    17. Granger, Clive W J, 1996. "Can We Improve the Perceived Quality of Economic Forecasts?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 455-473, Sept.-Oct.
    18. Garcia-Ferrer, Antonio, et al, 1987. "Macroeconomic Forecasting Using Pooled International Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(1), pages 53-67, January.
    19. SBRANA, Giacomo & SILVESTRINI, Andrea, 2009. "What do we know about comparing aggregate and disaggregate forecasts?," CORE Discussion Papers 2009020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Armstrong, J. Scott, 2007. "Significance tests harm progress in forecasting," International Journal of Forecasting, Elsevier, vol. 23(2), pages 321-327.
    21. Roma, Moreno & Skudelny, Frauke & Benalal, Nicholai & Diaz del Hoyo, Juan Luis & Landau, Bettina, 2004. "To aggregate or not to aggregate? Euro area inflation forecasting," Working Paper Series 374, European Central Bank.
    22. Ashley, Richard, 2003. "Statistically significant forecasting improvements: how much out-of-sample data is likely necessary?," International Journal of Forecasting, Elsevier, vol. 19(2), pages 229-239.
    23. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    24. Lutkepohl, Helmut, 1984. "Forecasting Contemporaneously Aggregated Vector ARMA Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 201-214, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Winkelried, Diego, 2013. "Modelo de Proyección Trimestral del BCRP: Actualización y novedades," Revista Estudios Económicos, Banco Central de Reserva del Perú, issue 26, pages 9-60.

    More about this item

    Keywords

    Modelos de series de tiempo; construcción y evaluación de modelos; predicción;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rbp:wpaper:2013-009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Research Unit). General contact details of provider: http://edirc.repec.org/data/bcrgvpe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.