IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/0309.html
   My bibliography  Save this paper

Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)

Author

Listed:

Abstract

A new method, called Relevant Transformation of the Inputs Network Approach (RETINA) isproposed as a tool for model building. It is designed around flexibility (with nonlinear transformations of the predictors of interest), selective search within the range of possible models, out-of-sample forecasting ability and computational simplicity. In tests on simulated data, it shows both a high rate of successful retrieval of the DGP which increases with the sample size and a good performance relative to other alternative procedures. A telephone service demand model is built to show how the procedure applies on real data.

Suggested Citation

  • Teodosio Perez-Amaral & Giampiero M. Gallo & Halbert White, 2003. "Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Documentos de Trabajo del ICAE 0309, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:0309
    as

    Download full text from publisher

    File URL: https://eprints.ucm.es/id/eprint/7689/1/0309.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    3. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    4. Krolzig, Hans-Martin & Hendry, David F., 2001. "Computer automation of general-to-specific model selection procedures," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
    5. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    8. David F. Hendry & Hans-Martin Krolzig, 1999. "Improving on 'Data mining reconsidered' by K.D. Hoover and S.J. Perez," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 202-219.
    9. Clive Granger & Allan Timmermann, 1999. "Data mining with local model specification uncertainty: a discussion of Hoover and Perez," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 220-225.
    10. Granger, Clive W. J. & King, Maxwell L. & White, Halbert, 1995. "Comments on testing economic theories and the use of model selection criteria," Journal of Econometrics, Elsevier, vol. 67(1), pages 173-187, May.
    11. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Acosta-González & Fernando Fernández-Rodríguez, 2014. "Forecasting Financial Failure of Firms via Genetic Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 133-157, February.
    2. Savin Ivan, 2013. "A Comparative Study of the Lasso-type and Heuristic Model Selection Methods," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(4), pages 526-549, August.
    3. Jurgen A. Doornik, 2008. "Encompassing and Automatic Model Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 915-925, December.
    4. Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
    5. Anders Bredahl Kock & Timo Teräsvirta, 2016. "Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
    6. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    7. Gernot Doppelhofer & Xavier Sala I Martin & Melvyn Weeks, 2005. "Jointness of Determinants of Economics Growth," Money Macro and Finance (MMF) Research Group Conference 2005 54, Money Macro and Finance Research Group.
    8. Doppelhofer, G. & Weeks, M., 2005. "Jointness of Growth Determinants," Cambridge Working Papers in Economics 0542, Faculty of Economics, University of Cambridge.
    9. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
    10. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    11. Camila Epprecht & Dominique Guegan & Álvaro Veiga, 2013. "Comparing variable selection techniques for linear regression: LASSO and Autometrics," Documents de travail du Centre d'Economie de la Sorbonne 13080, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    12. David F. Hendry & Hans‐Martin Krolzig, 2004. "We Ran One Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(5), pages 799-810, December.
    13. Eduardo Acosta-González & Fernando Fernández-Rodríguez & Hicham Ganga, 2019. "Predicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Data," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 227-257, January.
    14. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
    15. Massimiliano Marinucci & Teodosio Pérez-Amaral, 2005. "Econometric Modeling of Business Telecommunications Demand using RETINA and Finite Mixtures," Econometrics 0505003, University Library of Munich, Germany, revised 16 May 2005.
    16. Ivan Savin & Peter Winker, 2012. "Heuristic Optimization Methods for Dynamic Panel Data Model Selection: Application on the Russian Innovative Performance," Computational Economics, Springer;Society for Computational Economics, vol. 39(4), pages 337-363, April.
    17. Marcin Blazejowski & Pawel Kufel & Tadeusz Kufel, 2009. "Automatic Procedure of Building Congruent Dynamic Model in Gretl," EHUCHAPS, in: Ignacio Díaz-Emparanza & Petr Mariel & María Victoria Esteban (ed.), Econometrics with gretl. Proceedings of the gretl Conference 2009, edition 1, chapter 5, pages 75-89, Universidad del País Vasco - Facultad de Ciencias Económicas y Empresariales.
    18. Andreas Sachs & Frauke Schleer, 2013. "Labour Market Performance in OECD Countries: A Comprehensive Empirical Modelling Approach of Institutional Interdependencies. WWWforEurope Working Paper No. 7," WIFO Studies, WIFO, number 46851, February.
    19. Sachs, Andreas & Schleer, Frauke, 2013. "Labour market performance in OECD countries: A comprehensive empirical modelling approach of institutional interdependencies," ZEW Discussion Papers 13-040, ZEW - Leibniz Centre for European Economic Research.
    20. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00917797, HAL.
    21. Jennifer Castle & David Hendry, 2010. "Automatic Selection for Non-linear Models," Economics Series Working Papers 473, University of Oxford, Department of Economics.
    22. Ericsson Neil R., 2016. "Testing for and estimating structural breaks and other nonlinearities in a dynamic monetary sector," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 377-398, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    2. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    3. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    4. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    5. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
    6. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    7. Marie Bessec, 2010. "Etalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture," Economie & Prévision, La Documentation Française, vol. 0(2), pages 77-99.
    8. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    9. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    10. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    11. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    12. Firmin Doko Tchatoka & Qazi Haque, 2020. "On bootstrapping tests of equal forecast accuracy for nested models," Economics Discussion / Working Papers 20-06, The University of Western Australia, Department of Economics.
    13. Clark, Todd E. & McCracken, Michael W., 2015. "Nested forecast model comparisons: A new approach to testing equal accuracy," Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
    14. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    15. Rómulo Chumacero E., 2004. "Forecasting Chilean Industrial Production and Sales With Automated Procedures," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 7(3), pages 47-56, December.
    16. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
    17. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    18. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Journal of Econometrics, Elsevier, vol. 163(2), pages 215-230, August.
    19. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    20. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:0309. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Águeda González Abad). General contact details of provider: http://edirc.repec.org/data/feucmes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.