IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Modeling Financial Return Dynamics by Decomposition

  • Stanislav Anatolyev

    ()

    (New Economic School)

  • Nikolay Gospodinov

    ()

    (Concordia University)

While the predictability of excess stock returns is statistically small, their sign and volatility exhibit a substantially larger degree of dependence over time. We capitalize on this observation and consider prediction of excess stock returns by decomposing the equity premium into a product of sign and absolute value components and carefully modeling the marginal predictive densities of the two parts. Then we construct the joint density of a positively valued (absolute returns) random variable and a discrete binary (sign) random variable by copula methods and discuss computation of the conditional mean predictor. Our empirical analysis of US stock return data shows among other interesting ndings that despite the large unconditional correlation between the two multiplicative components they are conditionally very weakly dependent.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cefir.ru/papers/WP95Anatolyev.pdf
Download Restriction: no

Paper provided by Center for Economic and Financial Research (CEFIR) in its series Working Papers with number w0095.

as
in new window

Length: 29 pages
Date of creation: Jan 2007
Date of revision:
Handle: RePEc:cfr:cefirw:w0095
Contact details of provider: Postal:
117418 Russia, Moscow, Nakhimovsky pr., 47, office 720

Phone: +7 (495) 105 50 02
Fax: +7 (495) 105 50 03
Web page: http://www.cefir.ru
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
  2. Malcolm Baker & Jeffrey Wurgler, 1999. "The Equity Share in New Issues and Aggregate Stock Returns," Yale School of Management Working Papers ysm124, Yale School of Management, revised 01 Jan 2009.
  3. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
  4. Neil Shephard & Ole Barndorff-Nielsen, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Series Working Papers 2004-FE-01, University of Oxford, Department of Economics.
  5. John Y. Campbell & Robert J. Shiller, 1988. "Stock Prices, Earnings and Expected Dividends," NBER Working Papers 2511, National Bureau of Economic Research, Inc.
  6. Oliver Linton & Yoon-Jae Whang, 2004. "A Quantilogram Approach to Evaluating Directional Predictability," Cowles Foundation Discussion Papers 1454, Cowles Foundation for Research in Economics, Yale University.
  7. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-82, June.
  8. Andrew Patton, 2004. "Modelling Asymmetric Exchange Rate Dependence," Working Papers wp04-04, Warwick Business School, Finance Group.
  9. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
  10. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
  11. Martin Lettau, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, 06.
  12. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, 05.
  13. Peter F. Christoffersen & Francis X. Diebold & Roberto S. Mariano & Anthony S. Tay & Yiu Kuen Tse, 2006. "Direction-of-Change Forecasts Based on Conditional Variance, Skewness and Kurtosis Dynamics : International Evidence," Finance Working Papers 22075, East Asian Bureau of Economic Research.
  14. Elliott, Graham & Stock, James H., 1994. "Inference in Time Series Regression When the Order of Integration of a Regressor is Unknown," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 672-700, August.
  15. Qi, Min, 1999. "Nonlinear Predictability of Stock Returns Using Financial and Economic Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 419-29, October.
  16. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
  17. Peter F. Christoffersen & Francis X. Diebold, 2003. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," NBER Working Papers 10009, National Bureau of Economic Research, Inc.
  18. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
  19. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
  20. Robert J. Shiller & John Y. Campbell, 1986. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," Cowles Foundation Discussion Papers 812, Cowles Foundation for Research in Economics, Yale University.
  21. Robert M. de Jong & Tiemen Woutersen, 2007. "Dynamic time series binary choice," Economics Working Paper Archive 538, The Johns Hopkins University,Department of Economics.
  22. Walter Torous & Rossen Valkanov & Shu Yan, 2004. "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, University of Chicago Press, vol. 77(4), pages 937-966, October.
  23. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-86.
  24. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
  25. Anatolyev, Stanislav & Gerko, Alexander, 2005. "A Trading Approach to Testing for Predictability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 455-461, October.
  26. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1131-1147, October.
  27. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  28. repec:cup:etheor:v:10:y:1994:i:3-4:p:672-700 is not listed on IDEAS
  29. Gencay, Ramazan, 1998. "Optimization of technical trading strategies and the profitability in security markets," Economics Letters, Elsevier, vol. 59(2), pages 249-254, May.
  30. Christopher Polk & Samuel Thompson & Tuomo Vuolteenaho, 2004. "New Forecasts of the Equity Premium," NBER Working Papers 10406, National Bureau of Economic Research, Inc.
  31. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  32. John Y. Campbell & Samuel B. Thompson, 2005. "Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?," NBER Working Papers 11468, National Bureau of Economic Research, Inc.
  33. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  34. A. Colin Cameron & Tong Li & Pravin K. Trivedi & David M. Zimmer, 2004. "Modeling the Differences in Counted Outcomes using Bivariate Copula Models: with Application to Mismeasured Counts," Working Papers 43, University of California, Davis, Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cfr:cefirw:w0095. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Julia Babich)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.