IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/463.html
   My bibliography  Save this paper

A Quantilogram Approach to Evaluating Directional Predictability

Author

Listed:
  • Oliver Linton
  • Yoon-Jae Whang

Abstract

In this note we propose a simple method of measuring directional predictability and testing for the hypothesis that a given time series has no directional predictability. The test is based on the correlogram of quantile hits. We provide the distribution theory needed to conduct inference, propose some model free upper bound critical values, and apply our methods to stock index return data. The empirical results suggest some directional predictability in returns, especially in mid-range quantiles like 5%-10%.

Suggested Citation

  • Oliver Linton & Yoon-Jae Whang, 2003. "A Quantilogram Approach to Evaluating Directional Predictability," STICERD - Econometrics Paper Series 463, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:463
    as

    Download full text from publisher

    File URL: http://sticerd.lse.ac.uk/dps/em/em463.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:cup:etheor:v:7:y:1991:i:2:p:186-99 is not listed on IDEAS
    2. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    3. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    4. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(05), pages 793-813, December.
    5. Marc Hallin & Jean-Marie Dufour & Ivan Mizera, 1998. "Generalized run tests for heteroscedastic time series," ULB Institutional Repository 2013/2077, ULB -- Universite Libre de Bruxelles.
    6. repec:cup:etheor:v:12:y:1996:i:5:p:793-813 is not listed on IDEAS
    7. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(03), pages 458-467, December.
    8. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(02), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    2. Stanislav Anatolyev & Nikolay Gospodinov, 2007. "Modeling Financial Return Dynamics by Decomposition," Working Papers w0095, Center for Economic and Financial Research (CEFIR).
    3. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.

    More about this item

    Keywords

    Correlogram; dependence; efficient markets; quantiles.;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:463. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://sticerd.lse.ac.uk/_new/publications/default.asp .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.