IDEAS home Printed from https://ideas.repec.org/p/awi/wpaper/0655.html
   My bibliography  Save this paper

‘Déjà vol’ revisited: Survey forecasts of macroeconomic variables predict volatility in the cross-section of industry portfolios

Author

Listed:
  • Conrad, Christian
  • Glas, Alexander

Abstract

We investigate the question of whether macroeconomic variables contain information about future stock volatility beyond that contained in past volatility. We show that forecasts of GDP growth from the Federal Reserve's Survey of Professional Forecasters predict volatility in a cross-section of 49 industry portfolios. The expectation of higher growth rates is associated with lower stock volatility. Our results are in line with both counter-cyclical volatility in dividend news as well as in expected returns. Inflation forecasts predict higher or lower stock volatility depending on the state of the economy and the stance of monetary policy. Forecasts of higher unemployment rates are good news for stocks during expansions and go along with lower stock volatility. Our results hold in- as well as out-of-sample and pass various robustness checks.

Suggested Citation

  • Conrad, Christian & Glas, Alexander, 2018. "‘Déjà vol’ revisited: Survey forecasts of macroeconomic variables predict volatility in the cross-section of industry portfolios," Working Papers 0655, University of Heidelberg, Department of Economics.
  • Handle: RePEc:awi:wpaper:0655
    Note: This paper is part of http://archiv.ub.uni-heidelberg.de/volltextserver/view/schriftenreihen/sr-3.html
    as

    Download full text from publisher

    File URL: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bsz:16-heidok-253575
    File Function: Frontdoor page on HeiDOK
    Download Restriction: no

    File URL: http://archiv.ub.uni-heidelberg.de/volltextserver/25357/1/Conrad%20and%20Glas_2018_dp0655.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    2. Conrad, Christian & Schienle, Melanie, 2019. "Testing for an omitted multiplicative long-term component in GARCH models," Working Paper Series in Economics 121, Karlsruhe Institute of Technology (KIT), Department of Economics and Business Engineering.
    3. Terence Tai-Leung Chong & Shiyu Lin, 2017. "Predictive models for disaggregate stock market volatility," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 261-288, August.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    5. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    6. Engel, Charles & West, Kenneth D., 2006. "Taylor Rules and the Deutschmark: Dollar Real Exchange Rate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1175-1194, August.
    7. Campbell, Sean D. & Diebold, Francis X., 2009. "Stock Returns and Expected Business Conditions: Half a Century of Direct Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 266-278.
    8. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    9. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    10. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    11. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    12. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    13. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    14. Asgharian, Hossein & Hess, Wolfgang & Liu, Lu, 2013. "A spatial analysis of international stock market linkages," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4738-4754.
    15. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    16. repec:taf:jnlbes:v:30:y:2012:i:1:p:109-124 is not listed on IDEAS
    17. Christian Conrad & Karin Loch, 2015. "Anticipating Long‐Term Stock Market Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
    18. Cochrane, John H, 1992. "Explaining the Variance of Price-Dividend Ratios," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 243-280.
    19. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    20. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    21. Officer, R R, 1973. "The Variability of the Market Factor of the New York Stock Exchange," The Journal of Business, University of Chicago Press, vol. 46(3), pages 434-453, July.
    22. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    23. John H. Boyd & Jian Hu & Ravi Jagannathan, 2005. "The Stock Market's Reaction to Unemployment News: Why Bad News Is Usually Good for Stocks," Journal of Finance, American Finance Association, vol. 60(2), pages 649-672, April.
    24. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
    25. Christian Conrad & Michael J. Lamla, 2010. "The High‐Frequency Response of the EUR‐USD Exchange Rate to ECB Communication," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(7), pages 1391-1417, October.
    26. Ravi Bansal & Amir Yaron, 2004. "Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles," Journal of Finance, American Finance Association, vol. 59(4), pages 1481-1509, August.
    27. Campbell, John Y. & Giglio, Stefano & Polk, Christopher & Turley, Robert, 2018. "An intertemporal CAPM with stochastic volatility," Journal of Financial Economics, Elsevier, vol. 128(2), pages 207-233.
    28. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    29. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A comprehensive look at financial volatility prediction by economic variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
    30. Michael P. Clements, 2014. "Forecast Uncertainty- Ex Ante and Ex Post : U.S. Inflation and Output Growth," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 206-216, April.
    31. John Y. Campbell & Robert J. Shiller, 2001. "Valuation Ratios and the Long-Run Stock Market Outlook: An Update," NBER Working Papers 8221, National Bureau of Economic Research, Inc.
    32. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
    33. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Vega, Clara, 2007. "Real-time price discovery in global stock, bond and foreign exchange markets," Journal of International Economics, Elsevier, vol. 73(2), pages 251-277, November.
    34. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    35. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    36. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    37. Alexander David & Pietro Veronesi, 2013. "What Ties Return Volatilities to Price Valuations and Fundamentals?," Journal of Political Economy, University of Chicago Press, vol. 121(4), pages 682-746.
    38. Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
    39. Mele, Antonio, 2007. "Asymmetric stock market volatility and the cyclical behavior of expected returns," Journal of Financial Economics, Elsevier, vol. 86(2), pages 446-478, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Realized volatility; Survey of Professional Forecasters; forecast evaluation; predictive regressions;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:awi:wpaper:0655. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gabi Rauscher) The email address of this maintainer does not seem to be valid anymore. Please ask Gabi Rauscher to update the entry or send us the correct email address. General contact details of provider: http://edirc.repec.org/data/awheide.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.