IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables

  • Paye, Bradley S.
Registered author(s):

    Aggregate stock return volatility is both persistent and countercyclical. This paper tests whether it is possible to improve volatility forecasts at monthly and quarterly horizons by conditioning on additional macroeconomic variables. I find that several variables related to macroeconomic uncertainty, time-varying expected stock returns, and credit conditions Granger cause volatility. It is more difficult to find evidence that forecasts exploiting macroeconomic variables outperform a univariate benchmark out-of-sample. The most successful approaches involve simple combinations of individual forecasts. Predictive power associated with macroeconomic variables appears to concentrate around the onset of recessions.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0304405X12001316
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Financial Economics.

    Volume (Year): 106 (2012)
    Issue (Month): 3 ()
    Pages: 527-546

    as
    in new window

    Handle: RePEc:eee:jfinec:v:106:y:2012:i:3:p:527-546
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505576

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, EconWPA.
    2. Jacob Boudoukh & Roni Michaely & Matthew Richardson & Michael Roberts, 2004. "On the Importance of Measuring Payout Yield: Implications for Empirical Asset Pricing," NBER Working Papers 10651, National Bureau of Economic Research, Inc.
    3. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    4. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2003. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2003s-26, CIRANO.
    5. Wessel Marquering & Marno Verbeek, 2000. "The Economic Value of Predicting Stock Index Returns and Volatility," Center for Economic Studies - Discussion papers ces0020, Katholieke Universiteit Leuven, Centrum voor Economische Studiën.
    6. Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
    7. Campbell, Sean D. & Diebold, Francis X., 2009. "Stock Returns and Expected Business Conditions: Half a Century of Direct Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 266-278.
    8. Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
    9. Markus K. Brunnermeier & Lasse Heje Pedersen, 2009. "Market Liquidity and Funding Liquidity," Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
    10. S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-time measurement of business conditions," Working Papers 08-19, Federal Reserve Bank of Philadelphia.
    11. Ravi Bansal & Amir Yaron, 2004. "Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles," Journal of Finance, American Finance Association, vol. 59(4), pages 1481-1509, 08.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
    13. Robert F. Stambaugh, 1999. "Predictive Regressions," NBER Technical Working Papers 0240, National Bureau of Economic Research, Inc.
    14. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    15. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    16. Campbell, John & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Scholarly Articles 3122601, Harvard University Department of Economics.
    17. MacKinnon, James G, 1994. "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 167-76, April.
    18. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    19. Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
    20. Michael Jansson & Marcelo J. Moreira, 2004. "Optimal Inference in Regression Models with Nearly Integrated Regressors," NBER Technical Working Papers 0303, National Bureau of Economic Research, Inc.
    21. Brennan, Michael J. & Xia, Yihong, 2001. "Stock price volatility and equity premium," Journal of Monetary Economics, Elsevier, vol. 47(2), pages 249-283, April.
    22. repec:att:wimass:9417 is not listed on IDEAS
    23. Alexander David & Pietro Veronesi, 2009. "What Ties Return Volatilities to Price Valuations and Fundamentals?," NBER Working Papers 15563, National Bureau of Economic Research, Inc.
    24. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
    25. Martin Lettau & Stijn Van Nieuwerburgh, 2006. "Reconciling the Return Predictability Evidence," NBER Working Papers 12109, National Bureau of Economic Research, Inc.
    26. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
    27. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-53, December.
    28. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    29. Sydney Ludvigson & Martin Lettau, 1999. "Consumption, aggregate wealth and expected stock returns," Staff Reports 77, Federal Reserve Bank of New York.
    30. Adrian, Tobias & Shin, Hyun Song, 2010. "Liquidity and leverage," Journal of Financial Intermediation, Elsevier, vol. 19(3), pages 418-437, July.
    31. Cochrane, John H, 1991. " Production-Based Asset Pricing and the Link between Stock Returns and Economic Fluctuations," Journal of Finance, American Finance Association, vol. 46(1), pages 209-37, March.
    32. Harvey, Campbell R., 2001. "The specification of conditional expectations," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 573-637, December.
    33. Walter Torous & Rossen Valkanov & Shu Yan, 2004. "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, University of Chicago Press, vol. 77(4), pages 937-966, October.
    34. Arturo Estrella & Gikas A. Hardouvelis, 1989. "The term structure as a predictor of real economic activity," Research Paper 8907, Federal Reserve Bank of New York.
    35. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    36. Matthew Spiegel, 2008. "Forecasting the Equity Premium: Where We Stand Today," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1453-1454, July.
    37. Veronesi, Pietro, 1999. "Stock Market Overreaction to Bad News in Good Times: A Rational Expectations Equilibrium Model," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 975-1007.
    38. Timmermann, Allan G, 1993. "How Learning in Financial Markets Generates Excess Volatility and Predictability in Stock Prices," The Quarterly Journal of Economics, MIT Press, vol. 108(4), pages 1135-45, November.
    39. Shanken, Jay, 1990. "Intertemporal asset pricing : An Empirical Investigation," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 99-120.
    40. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
    41. Mele, Antonio, 2007. "Asymmetric stock market volatility and the cyclical behavior of expected returns," Journal of Financial Economics, Elsevier, vol. 86(2), pages 446-478, November.
    42. Whitelaw, Robert F, 1994. " Time Variations and Covariations in the Expectation and Volatility of Stock Market Returns," Journal of Finance, American Finance Association, vol. 49(2), pages 515-41, June.
    43. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jfinec:v:106:y:2012:i:3:p:527-546. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.