IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/35949.html
   My bibliography  Save this paper

How informative are in-sample information criteria to forecasting? the case of Chilean GDP

Author

Listed:
  • Medel, Carlos A.

Abstract

There is no standard economic forecasting procedure that systematically outperforms the others at all horizons and with any dataset. A common way to proceed, in many contexts, is to choose the best model within a family based on a fitting criteria, and then forecast. I compare the out-of-sample performance of a large number of autoregressive integrated moving average (ARIMA) models with some variations, chosen by three commonly used information criteria for model building: Akaike, Schwarz, and Hannan-Quinn. I perform this exercise to identify how to achieve the smallest root mean squared forecast error with models based on information criteria. I use the Chilean GDP dataset, estimating with a rolling window sample to generate one- to four-step ahead forecasts. Also, I examine the role of seasonal adjustment and the Easter effect on out-of-sample performance. After the estimation of more than 20 million models, the results show that Akaike and Schwarz are better criteria for forecasting purposes where the traditional ARMA specification is preferred. Accounting for the Easter effect improves the forecast accuracy only with seasonally adjusted data, and second-order stationarity is best.

Suggested Citation

  • Medel, Carlos A., 2012. "How informative are in-sample information criteria to forecasting? the case of Chilean GDP," MPRA Paper 35949, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:35949
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/35949/1/MPRA_paper_35949.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    3. Clive Granger & Yongil Jeon, 2004. "Forecasting Performance of Information Criteria with Many Macro Series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(10), pages 1227-1240.
    4. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    5. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    6. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    7. Capistrán, Carlos & Constandse, Christian & Ramos-Francia, Manuel, 2010. "Multi-horizon inflation forecasts using disaggregated data," Economic Modelling, Elsevier, vol. 27(3), pages 666-677, May.
    8. Melard, G. & Pasteels, J. -M., 2000. "Automatic ARIMA modeling including interventions, using time series expert software," International Journal of Forecasting, Elsevier, vol. 16(4), pages 497-508.
    9. Pablo Pincheira Brown & Álvaro García Marín, 2009. "Forecasting Inflation in Chile With an Accurate Benchmark," Working Papers Central Bank of Chile 514, Central Bank of Chile.
    10. Pincheira, Pablo, 2013. "A Bunch of Models, a Bunch of Nulls and Inference about Predictive Ability," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 26-43, October.
    11. Marcus Cobb, 2009. "Forecasting Chilean Inflation From Disaggregate Components," Working Papers Central Bank of Chile 545, Central Bank of Chile.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    13. Dickey, David A & Pantula, Sastry G, 1987. "Determining the Ordering of Differencing in Autoregressive Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 455-461, October.
    14. Marcus Cobb C. & Carlos A. Medel V., 2010. "Una Estimación del Impacto del Efecto Calendario en Series Desestacionalizadas Chilenas de Actividad y Demanda," Notas de Investigación Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 13(3), pages 95-103, December.
    15. Carlos Medel & Marcela Urrutia, 2010. "Proyección Agregada y Desagregada del PIB Chileno con Procedimientos Automatizados de Series de Tiempo," Working Papers Central Bank of Chile 577, Central Bank of Chile.
    16. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    17. Ghysels, Eric & Osborn, Denise R. & Rodrigues, Paulo M.M., 2006. "Forecasting Seasonal Time Series," Handbook of Economic Forecasting, Elsevier.
    18. Guy Melard & Jean-Michel Pasteels, 2000. "Automatic ARIMA modeling including interventions, using time series expert software," ULB Institutional Repository 2013/13744, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Medel, 2012. "¿Akaike o Schwarz? ¿Cuál elegir para Predecir el PIB Chileno?," Working Papers Central Bank of Chile 658, Central Bank of Chile.
    2. Carlos A. Medel, 2018. "A Comparison Between Direct and Indirect Seasonal Adjustment of the Chilean GDP 1986–2009 with X-12-ARIMA," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 47-87, April.
    3. Carlos Medel, 2014. "Probabilidad Clásica de Sobreajuste con Criterios de Información: Estimaciones con Series Macroeconómicas Chilenas," Working Papers Central Bank of Chile 735, Central Bank of Chile.
    4. Javier Pereda, 2011. "Estimación de la tasa natural de interés para Perú: un enfoque financiero," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 429-459, octubre-d.
    5. Carlos A. Medel Vera, 2011. "¿Akaike o Schwarz? ¿Cuál utilizar para predecir el PIB chileno?," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 591-615, octubre-d.
    6. Daniel Fernández, 2011. "Suficiencia del capital y previsiones de la banca uruguaya por su exposición al sector industrial," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 517-589, octubre-d.
    7. Tamara Burdisso & Eduardo Ariel Corso, 2011. "Incertidumbre y dolarización de cartera: el caso argentino en el último medio siglo," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 461-515, octubre-d.

    More about this item

    Keywords

    data mining; forecasting; ARIMA; seasonal adjustment; Easter-effect;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:35949. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.