IDEAS home Printed from https://ideas.repec.org/p/chb/bcchwp/545.html
   My bibliography  Save this paper

Forecasting Chilean Inflation From Disaggregate Components

Author

Listed:
  • Marcus Cobb

Abstract

In this paper an exercise is performed to determine the usefulness of utilizing disaggregated price data to forecast headline inflation more accurately. A number of methods based on univariate and multivariate autoregressive models are used for different levels of disaggregation for a period of stable inflation and a period of accelerating inflation. The results show that a certain level of disaggregation could be beneficial when inflation is not low and stable, suggesting that under certain circumstances the disaggregate approach captures the underlying dynamics of inflation more efficiently. The benefits are noticeable for the three-, six- and twelve-month horizons, as opposed to the one-month horizon, where improvements seem negligible.

Suggested Citation

  • Marcus Cobb, 2009. "Forecasting Chilean Inflation From Disaggregate Components," Working Papers Central Bank of Chile 545, Central Bank of Chile.
  • Handle: RePEc:chb:bcchwp:545
    as

    Download full text from publisher

    File URL: http://si2.bcentral.cl/public/pdf/documentos-trabajo/pdf/dtbc545.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    2. Aigner, Dennis J & Goldfeld, Stephen M, 1974. "Estimation and Prediction from Aggregate Data when Aggregates are Measured More Accurately than Their Components," Econometrica, Econometric Society, vol. 42(1), pages 113-134, January.
    3. Erik Hjalmarsson & Pär Österholm, 2010. "Testing for cointegration using the Johansen methodology when variables are near-integrated: size distortions and partial remedies," Empirical Economics, Springer, vol. 39(1), pages 51-76, August.
    4. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    5. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    6. A. Espasa & E. Senra & R. Albacete, 2002. "Forecasting inflation in the European Monetary Union: A disaggregated approach by countries and by sectors," The European Journal of Finance, Taylor & Francis Journals, vol. 8(4), pages 402-421.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Jonas D. M. Fisher & Chin Te Liu & Ruilin Zhou, 2002. "When can we forecast inflation?," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q I, pages 32-44.
    9. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    10. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    11. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Aikman & Piergiorgio Alessandri & Bruno Eklund & Prasanna Gai & Sujit Kapadia & Elizabeth Martin & Nada Mora & Gabriel Sterne & Matthew Willison, 2011. "Funding Liquidity Risk in a Quantitative Model of Systemic Stability," Central Banking, Analysis, and Economic Policies Book Series,in: Rodrigo Alfaro (ed.), Financial Stability, Monetary Policy, and Central Banking, edition 1, volume 15, chapter 12, pages 371-410 Central Bank of Chile.
    2. Carlos Medel, 2012. "¿Akaike o Schwarz? ¿Cuál elegir para Predecir el PIB Chileno?," Working Papers Central Bank of Chile 658, Central Bank of Chile.
    3. Carlos A. Medel, 2013. "How informative are in-sample information criteria to forecasting? The case of Chilean GDP," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 50(1), pages 133-161, May.
    4. Rodrigo A. Alfaro & Rodrigo Cifuentes S., 2011. "Financial Stability, Monetary Policy, and Central Banking: An Overview," Central Banking, Analysis, and Economic Policies Book Series,in: Rodrigo Alfaro (ed.), Financial Stability, Monetary Policy, and Central Banking, edition 1, volume 15, chapter 1, pages 001-010 Central Bank of Chile.
    5. Alberto Naudon, 2010. "A Stochastic Assignment Model," Working Papers Central Bank of Chile 558, Central Bank of Chile.
    6. Daniel Fernández, 2011. "Suficiencia del capital y previsiones de la banca uruguaya por su exposición al sector industrial," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 517-589, octubre-d.
    7. Leon, Jorge, 2012. "A Disaggregate Model and Second Round Effects for the CPI Inflation in Costa Rica," MPRA Paper 44484, University Library of Munich, Germany, revised 2012.
    8. Pablo Pincheira, 2010. "A Real Time Evaluation of the Central Bank of Chile GDP Growth Forecasts," Money Affairs, Centro de Estudios Monetarios Latinoamericanos, vol. 0(1), pages 37-73, January-J.
    9. Pablo Pincheira & Hernán Rubio, 2010. "The Low Predictive Power of Simple Phillips Curves in Chile: A Real-Time Evaluation," Working Papers Central Bank of Chile 559, Central Bank of Chile.
    10. Tamara Burdisso & Eduardo Ariel Corso, 2011. "Incertidumbre y dolarización de cartera: el caso argentino en el último medio siglo," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 461-515, octubre-d.
    11. Javier Pereda, 2011. "Estimación de la tasa natural de interés para Perú: un enfoque financiero," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 429-459, octubre-d.
    12. Carlos A. Medel Vera, 2011. "¿Akaike o Schwarz? ¿Cuál utilizar para predecir el PIB chileno?," Monetaria, Centro de Estudios Monetarios Latinoamericanos, vol. 0(4), pages 591-615, octubre-d.
    13. Carlos Medel & Marcela Urrutia, 2010. "Proyección Agregada y Desagregada del PIB Chileno con Procedimientos Automatizados de Series de Tiempo," Working Papers Central Bank of Chile 577, Central Bank of Chile.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chb:bcchwp:545. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Claudio Sepulveda). General contact details of provider: http://edirc.repec.org/data/bccgvcl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.