IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/37045.html
   My bibliography  Save this paper

Microdata imputations and macrodata implications: evidence from the Ifo Business Survey

Author

Listed:
  • Seiler, Christian
  • Heumann, Christian

Abstract

A widespread method for now- and forecasting economic macro level parameters such as GDP growth rates are survey-based indicators which contain early information in contrast to official data. But surveys are commonly affected by nonresponding units which can produce biases if these missing values can not be regarded as missing at random. As many papers examined the effect of nonresponse in individual or household surveys, only less is known in the case of business surveys. So, literature leaves a gap on this issue. For this reason, we analyse and impute the missing observations in the Ifo Business Survey, a large business survey in Germany. The most prominent result of this survey is the Ifo Business Climate Index, a leading indicator for the German business cycle. To reflect the underlying latent data generating process, we compare different imputation approaches for longitudinal data. After this, the microdata are aggregated and the results are compared with the original indicators to evaluate their implications on the macro level. Finally, we show that the bias is minimal and ignorable.

Suggested Citation

  • Seiler, Christian & Heumann, Christian, 2012. "Microdata imputations and macrodata implications: evidence from the Ifo Business Survey," MPRA Paper 37045, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:37045
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/37045/1/MPRA_paper_37045.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
    3. Jörg Drechsler, 2011. "Multiple imputation in practice—a case study using a complex German establishment survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 1-26, March.
    4. Cameron,A. Colin & Trivedi,Pravin K., 2008. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9787111235767, December.
    5. Christian Seiler, 2010. "Dynamic Modelling of Nonresponse in Business Surveys," ifo Working Paper Series 93, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    6. repec:cup:apsrev:v:95:y:2001:i:01:p:49-69_00 is not listed on IDEAS
    7. Christian Seiler, 2012. "On the Robustness of the Balance Statistics with respect to Nonresponse," ifo Working Paper Series 126, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    8. Daniel Schunk, 2008. "A Markov chain Monte Carlo algorithm for multiple imputation in large surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 101-114, February.
    9. Honaker, James & King, Gary & Blackwell, Matthew, 2011. "Amelia II: A Program for Missing Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i07).
    10. Sascha O. Becker & Klaus Wohlrabe, 2008. "European Data Watch: Micro Data at the Ifo Institute for Economic Research – The “Ifo Business Survey”, Usage and Access," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 128(2), pages 307-319.
    11. Michela Nardo, 2003. "The Quantification of Qualitative Survey Data : A Critical Assessment," Journal of Economic Surveys, Wiley Blackwell, vol. 17(5), pages 645-668, December.
    12. Florian Janik & Susanne Kohaut, 2012. "Why don’t they answer? Unit non-response in the IAB establishment panel," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(3), pages 917-934, April.
    13. Kristian Kleinke & Mark Stemmler & Jost Reinecke & Friedrich Lösel, 2011. "Efficient ways to impute incomplete panel data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 351-373, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:jbuscr:v:12:y:2016:i:1:d:10.1007_s41549-016-0002-5 is not listed on IDEAS
    2. Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52.
    3. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    4. Christian Seiler, 2014. "Mode Preferences in Business Surveys: Evidence from Germany," ifo Working Paper Series 193, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    5. Christian Seiler, 2012. "Zur Robustheit des ifo Geschäftsklimaindikators in Bezug auf fehlende Werte," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(17), pages 19-22, September.
    6. Christian Seiler, 2015. "On the robustness of balance statistics with respect to nonresponse," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2014(2), pages 45-62.

    More about this item

    Keywords

    Business survey; Longitudinal data; Imputation; Nonresponse;

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:37045. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.