IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.21981.html
   My bibliography  Save this paper

An Artificial Trend Index for Private Consumption Using Google Trends

Author

Listed:
  • Juan Tenorio
  • Heidi Alpiste
  • Jakelin Rem'on
  • Arian Segil

Abstract

In recent years, the use of databases that analyze trends, sentiments or news to make economic projections or create indicators has gained significant popularity, particularly with the Google Trends platform. This article explores the potential of Google search data to develop a new index that improves economic forecasts, with a particular focus on one of the key components of economic activity: private consumption (64\% of GDP in Peru). By selecting and estimating categorized variables, machine learning techniques are applied, demonstrating that Google data can identify patterns to generate a leading indicator in real time and improve the accuracy of forecasts. Finally, the results show that Google's "Food" and "Tourism" categories significantly reduce projection errors, highlighting the importance of using this information in a segmented manner to improve macroeconomic forecasts.

Suggested Citation

  • Juan Tenorio & Heidi Alpiste & Jakelin Rem'on & Arian Segil, 2025. "An Artificial Trend Index for Private Consumption Using Google Trends," Papers 2503.21981, arXiv.org.
  • Handle: RePEc:arx:papers:2503.21981
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.21981
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephane Dees & Pedro Soares Brinca, 2013. "Consumer confidence as a predictor of consumption spending: Evidence for the United States and the Euro area," International Economics, CEPII research center, issue 134, pages 1-14.
    2. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    3. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    4. Carroll, Christopher D & Fuhrer, Jeffrey C & Wilcox, David W, 1994. "Does Consumer Sentiment Forecast Household Spending? If So, Why?," American Economic Review, American Economic Association, vol. 84(5), pages 1397-1408, December.
    5. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    6. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Andy C.C. Kwan & John A. Cotsomitis, 2006. "The Usefulness of Consumer Confidence in Forecasting Household Spending in Canada: A National and Regional Analysis," Economic Inquiry, Western Economic Association International, vol. 44(1), pages 185-197, January.
    9. repec:cii:cepiei:2013-q2-134-1 is not listed on IDEAS
    10. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    11. María Gil & Javier J. Pérez & Alberto Urtasun, 2019. "Nowcasting private consumption: traditional indicators, uncertainty measures, credit cards and some internet data," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    12. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    13. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    14. Jaemin Woo & Ann L. Owen, 2019. "Forecasting private consumption with Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(2), pages 81-91, March.
    15. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    16. Chang, Jillie & Del Río, Andrea, 2013. "Google Trends: Predicción del nivel de empleo agregado en Perú usando datos en tiempo real, 2005-2011," Working Papers 2013-015, Banco Central de Reserva del Perú.
    17. Brigitte Desroches & Marc-André Gosselin, 2002. "The Usefulness of Consumer Confidence Indexes in the United States," Staff Working Papers 02-22, Bank of Canada.
    18. Croushore, Dean, 2005. "Do consumer-confidence indexes help forecast consumer spending in real time?," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 435-450, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    2. Juhro, Solikin M. & Iyke, Bernard Njindan, 2020. "Consumer confidence and consumption expenditure in Indonesia," Economic Modelling, Elsevier, vol. 89(C), pages 367-377.
    3. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    4. repec:zbw:rwirep:0208 is not listed on IDEAS
    5. Torsten Schmidt & Simeon Vosen, 2010. "A monthly consumption indicator for Germany based on internet search query data," Ruhr Economic Papers 0208, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    6. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    7. Euler Pereira G. de Mello & Francisco Marcos R. Figueiredo, 2014. "Assessing the Short-term Forecasting Power of Confidence Indices," Working Papers Series 371, Central Bank of Brazil, Research Department.
    8. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
    9. Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.
    10. Hector H. Sandoval & Anita N. Walsh, 2021. "The role of consumer confidence in forecasting consumption, evidence from Florida," Southern Economic Journal, John Wiley & Sons, vol. 88(2), pages 757-788, October.
    11. Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
    12. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    13. Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
    14. Luis E. Arango & Luz A. Flórez & N. Johana Marín & Carlos E. Posada, 2024. "Consumption of households in Colombia: What do the retail trade indices tell us?," Borradores de Economia 1275, Banco de la Republica de Colombia.
    15. Stephen Bruestle & W. Mark Crain, 2015. "A mean-variance approach to forecasting with the consumer confidence index," Applied Economics, Taylor & Francis Journals, vol. 47(23), pages 2430-2444, May.
    16. Baghestani, Hamid & AbuAl-Foul, Bassam M., 2017. "Comparing Federal Reserve, Blue Chip, and time series forecasts of US output growth," Journal of Economics and Business, Elsevier, vol. 89(C), pages 47-56.
    17. Dudek, Sławomir, 2008. "Consumer Survey Data and short-term forecasting of households consumption expenditures in Poland," MPRA Paper 19818, University Library of Munich, Germany.
    18. Baghestani, Hamid, 2021. "Predicting growth in US durables spending using consumer durables-buying attitudes," Journal of Business Research, Elsevier, vol. 131(C), pages 327-336.
    19. Kajal Lahiri & George Monokroussos & Yongchen Zhao, 2016. "Forecasting Consumption: the Role of Consumer Confidence in Real Time with many Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1254-1275, November.
    20. Karaman Örsal, Deniz Dilan, 2021. "Onlinedaten und Konsumentscheidungen: Voraussagen anhand von Daten aus Social Media und Suchmaschinen," Edition HWWI: Chapters, in: Straubhaar, Thomas (ed.), Neuvermessung der Datenökonomie, volume 6, pages 157-172, Hamburg Institute of International Economics (HWWI).
    21. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.21981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.