IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Forecasting Chinese GDP Growth with Mixed Frequency Data: Which Indicators to Look at?

Building on a mixed data sampling (MIDAS) model we evaluate the predictive power of a variety of monthly macroeconomic indicators for forecasting quarterly Chinese GDP growth. We iterate the evaluation over forecast horizons from 370 days to 1 day prior to GDP release and track the release days of the indicators so as to only use information which is actually available at the respective day of forecast. This procedure allows us to detect how useful a specific indicator is at a specific forecast horizon relative to other indicators. Despite being published with an (additional) lag of one month the OECD leading indicator outperforms the leading indicators published by the Conference Board and by Goldman Sachs. Albeit being smaller in terms of market volume, the Shenzhen Composite Stock Exchange Index outperforms the Shanghai Composite Stock Exchange Index and several Hong Kong Stock Exchange indices. Consumer price in flation is especially valuable at forecast horizons of 11 to 7 months. The reserve requirement ratio for small banks proves to be a robust predictor at forecast horizons of 9 to 5 months, whereas the big banks reserve requirement ratio and the prime lending rate have lost their leading properties since 2009. Industrial production can be quite valuable for now- or even forecasting, but only if it is released shortly after the end of a month. Neither monthly retail sales, investment, trade, electricity usage, freight traffic nor the manufacturing purchasing managers' index of the Chinese National Bureau of Statistics help much for now- or forecasting. Our results might be relevant for experts who need to know which indicator releases are really valuable for predicting quarterly Chinese GDP growth, and which indicator releases have less predictive content.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://kofportal.kof.ethz.ch/publications/download/3346/wp_359.pdf
Download Restriction: no

Paper provided by KOF Swiss Economic Institute, ETH Zurich in its series KOF Working papers with number 14-359.

as
in new window

Length: 43 pages
Date of creation: Jul 2014
Handle: RePEc:kof:wpskof:14-359
Contact details of provider: Postal:
Leonhardstrasse 21, CH-8092 Zürich

Phone: +41 44 632 42 39
Fax: +41 44 632 12 18
Web page: http://www.kof.ethz.ch
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Mehrotra, Aaron & Pääkkönen, Jenni, 2011. "Comparing China's GDP statistics with coincident indicators," Journal of Comparative Economics, Elsevier, vol. 39(3), pages 406-411, September.
  2. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
  3. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kof:wpskof:14-359. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.