IDEAS home Printed from https://ideas.repec.org/p/hit/hiasdp/hias-e-127.html
   My bibliography  Save this paper

High-frequency realized stochastic volatility model

Author

Listed:
  • Watanabe, Toshiaki
  • Nakajima, Jouchi

Abstract

A new high-frequency realized stochastic volatility model is proposed. Apart from the standard daily-frequency stochastic volatility model, the high-frequency stochastic volatility model is fit to intraday returns by extensively incorporating intraday volatility patterns. The daily realized volatility calculated using intraday returns is incorporated into the high-frequency stochastic volatility model by considering the bias in the daily realized volatility caused by microstructure noise. The volatility of intraday returns is assumed to consist of the autoregressive process, the seasonal component of the intraday volatility pattern, and the announcement component responding to macroeconomic announcements. A Bayesian method via Markov chain Monte Carlo is developed for the analysis of the proposed model. The empirical analysis using the 5-minute returns of E-mini S&P 500 futures provides evidence that our high-frequency realized stochastic volatility model improves in-sample model fit and volatility forecasting over the existing models.

Suggested Citation

  • Watanabe, Toshiaki & Nakajima, Jouchi, 2023. "High-frequency realized stochastic volatility model," Discussion paper series HIAS-E-127, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
  • Handle: RePEc:hit:hiasdp:hias-e-127
    as

    Download full text from publisher

    File URL: https://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/78469/070_hiasDP-E-127.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    3. Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2009. "Estimating stochastic volatility models using daily returns and realized volatility simultaneously," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2404-2426, April.
    4. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    5. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2021. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Discussion paper series HIAS-E-104, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    6. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    8. Siem Jan Koopman & Marcel Scharth, 2012. "The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 76-115, December.
    9. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    10. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
    11. Jeremias Bekierman & Bastian Gribisch, 2021. "A Mixed Frequency Stochastic Volatility Model for Intraday Stock Market Returns," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 496-530.
    12. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    13. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    14. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    15. Jouchi Nakajima, 2017. "Bayesian analysis of multivariate stochastic volatility with skew return distribution," Econometric Reviews, Taylor & Francis Journals, vol. 36(5), pages 546-562, May.
    16. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    17. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    18. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    19. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    20. Watanabe, Toshiaki, 2001. "On sampling the degree-of-freedom of Student's-t disturbances," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 177-181, April.
    21. Jonathan R. Stroud & Michael S. Johannes, 2014. "Bayesian Modeling and Forecasting of 24-Hour High-Frequency Volatility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1368-1384, December.
    22. repec:hal:journl:peer-00741630 is not listed on IDEAS
    23. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    24. Toshiaki Watanabe, 2004. "A multi-move sampler for estimating non-Gaussian time series models: Comments on Shephard & Pitt (1997)," Biometrika, Biometrika Trust, vol. 91(1), pages 246-248, March.
    25. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daichi Hiraki & Siddhartha Chib & Yasuhiro Omori, 2024. "Stochastic Volatility in Mean: Efficient Analysis by a Generalized Mixture Sampler," Papers 2404.13986, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014. "Realized stochastic volatility with leverage and long memory," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.
    2. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    3. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    4. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2021. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Discussion paper series HIAS-E-104, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    5. Shirota, Shinichiro & Omori, Yasuhiro & F. Lopes, Hedibert. & Piao, Haixiang, 2017. "Cholesky realized stochastic volatility model," Econometrics and Statistics, Elsevier, vol. 3(C), pages 34-59.
    6. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    7. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    8. Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
    9. Didit Nugroho & Takayuki Morimoto, 2015. "Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods," Computational Statistics, Springer, vol. 30(2), pages 491-516, June.
    10. Jouchi Nakajima & Yasuhiro Omori, 2010. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-Tailed Error Using GH Skew Student's t-Distribution Models," CIRJE F-Series CIRJE-F-738, CIRJE, Faculty of Economics, University of Tokyo.
    11. Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
    12. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    13. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    14. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    15. Mao, Xiuping & Ruiz Ortega, Esther & Lopes Moreira Da Veiga, María Helena, 2013. "One for all : nesting asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws131110, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2009. "Estimating stochastic volatility models using daily returns and realized volatility simultaneously," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2404-2426, April.
    17. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    18. Nakajima Jouchi, 2013. "Stochastic volatility model with regime-switching skewness in heavy-tailed errors for exchange rate returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 499-520, December.
    19. Toshiaki Ogawa & Masato Ubukata & Toshiaki Watanabe, 2020. "Stock Return Predictability and Variance Risk Premia around the ZLB," IMES Discussion Paper Series 20-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
    20. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.

    More about this item

    Keywords

    Bayesian analysis; High-frequency data; Markov chain Monte Carlo; Realized volatility; Stochastic volatility model; Volatility forecasting;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:hiasdp:hias-e-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Resources Section, Hitotsubashi University Library (email available below). General contact details of provider: https://edirc.repec.org/data/ashitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.