IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v19y2021i3p496-530..html
   My bibliography  Save this article

A Mixed Frequency Stochastic Volatility Model for Intraday Stock Market Returns

Author

Listed:
  • Jeremias Bekierman
  • Bastian Gribisch

Abstract

We propose a mixed frequency stochastic volatility model for intraday returns. To account for long-memory type of dependence patterns we introduce a long-run component that changes daily and a short-run component that captures the remaining intraday volatility dynamics. We analyze the model’s stochastic properties and extend it to capture leverage effects and overnight return information. The model is estimated by simulated maximum likelihood using efficient importance sampling. We apply the model to 30-min returns of 12 stocks. The results show that the model successfully accounts for the complex dynamic and distributional properties of asset returns both on the intraday and the daily frequency.

Suggested Citation

  • Jeremias Bekierman & Bastian Gribisch, 2021. "A Mixed Frequency Stochastic Volatility Model for Intraday Stock Market Returns," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 496-530.
  • Handle: RePEc:oup:jfinec:v:19:y:2021:i:3:p:496-530.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbz021
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
    2. ChanKyu Paik & Jinhee Choi & Ivan Ureta Vaquero, 2024. "Algorithm-Based Low-Frequency Trading Using a Stochastic Oscillator, Williams%R, and Trading Volume for the S&P 500," JRFM, MDPI, vol. 17(11), pages 1-20, November.
    3. Holger Dette & Vasyl Golosnoy & Janosch Kellermann, 2023. "The effect of intraday periodicity on realized volatility measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 315-342, April.
    4. Watanabe, Toshiaki & Nakajima, Jouchi, 2023. "High-frequency realized stochastic volatility model," Discussion paper series HIAS-E-127, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.

    More about this item

    Keywords

    intraday stochastic volatility; mixed frequency; overnight returns; leverage; efficient importance sampling;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:19:y:2021:i:3:p:496-530.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.