IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Modeling and Forecasting Persistent Financial Durations

  • Filip Zikes
  • Jozef Barunik
  • Nikhil Shenai

This paper introduces the Markov-Switching Multifractal Duration (MSMD) model by adapting the MSM stochastic volatility model of Calvet and Fisher (2004) to the duration setting. Although the MSMD process is exponential $\beta$-mixing as we show in the paper, it is capable of generating highly persistent autocorrelation. We study analytically and by simulation how this feature of durations generated by the MSMD process propagates to counts and realized volatility. We employ a quasi-maximum likelihood estimator of the MSMD parameters based on the Whittle approximation and establish its strong consistency and asymptotic normality for general MSMD specifications. We show that the Whittle estimation is a computationally simple and fast alternative to maximum likelihood. Finally, we compare the performance of the MSMD model with competing short- and long-memory duration models in an out-of-sample forecasting exercise based on price durations of three major foreign exchange futures contracts. The results of the comparison show that the MSMD and LMSD perform similarly and are superior to the short-memory ACD models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/1208.3087
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 1208.3087.

as
in new window

Length:
Date of creation: Aug 2012
Date of revision: Apr 2013
Handle: RePEc:arx:papers:1208.3087
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Liu, Ming, 2000. "Modeling long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 99(1), pages 139-171, November.
  2. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Duration-Based Volatility Estimation," Global COE Hi-Stat Discussion Paper Series gd08-034, Institute of Economic Research, Hitotsubashi University.
  3. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  4. Bacry, E. & Kozhemyak, A. & Muzy, Jean-Francois, 2008. "Continuous cascade models for asset returns," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 156-199, January.
  5. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-16, April.
  6. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
  7. Fernandes, Marcelo & Grammig, Joachim, 2003. "A family of autoregressive conditional duration models," Economics Working Papers (Ensaios Economicos da EPGE) 501, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  8. Brockwell, P. J. & Dahlhaus, R., 2004. "Generalized Levinson-Durbin and Burg algorithms," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 129-149.
  9. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
  10. Thomas Lux, 2006. "The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility," Working Papers wp06-19, Warwick Business School, Finance Group.
  11. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  12. Oomen, Roel C.A., 2006. "Properties of Realized Variance Under Alternative Sampling Schemes," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 219-237, April.
  13. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
  14. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
  15. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  16. Abadir, Karim M. & Talmain, Gabriel, 2005. "Autocovariance functions of series and of their transforms," Journal of Econometrics, Elsevier, vol. 124(2), pages 227-252, February.
  17. Deo, Rohit & Hurvich, Clifford M. & Soulier, Philippe & Wang, Yi, 2009. "Conditions For The Propagation Of Memory Parameter From Durations To Counts And Realized Volatility," Econometric Theory, Cambridge University Press, vol. 25(03), pages 764-792, June.
  18. Chen, Willa W. & Deo, Rohit S., 2004. "A Generalized Portmanteau Goodness-Of-Fit Test For Time Series Models," Econometric Theory, Cambridge University Press, vol. 20(02), pages 382-416, April.
  19. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, 09.
  20. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  21. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
  22. Zaffaroni, Paolo, 2009. "Whittle estimation of EGARCH and other exponential volatility models," Journal of Econometrics, Elsevier, vol. 151(2), pages 190-200, August.
  23. Michael R. King & Carol Osler & Dagfinn Rime, 2011. "Foreign exchange market structure, players and evolution," Working Paper 2011/10, Norges Bank.
  24. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037, March.
  25. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 49-83.
  26. Renault, Eric & Werker, Bas J.M., 2011. "Causality effects in return volatility measures with random times," Journal of Econometrics, Elsevier, vol. 160(1), pages 272-279, January.
  27. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1208.3087. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.