IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Whittle estimation of EGARCH and other exponential volatility models

  • Zaffaroni, Paolo
Registered author(s):

    The strong consistency and asymptotic normality of the Whittle estimate of the parameters in a class of exponential volatility processes are established. Our main focus here are the EGARCH model of [Nelson, D. 1991. Conditional heteroscedasticity in asset pricing: A new approach. Econometrica 59, 347-370] and other one-shock models such as the GJR model of [Glosten, L., Jaganathan, R., Runkle, D., 1993. On the relation between the expected value and the volatility of the nominal excess returns on stocks. Journal of Finance, 48, 1779-1801], but two-shock models, such as the SV model of [Taylor, S. 1986. Modelling Financial Time Series. Wiley, Chichester, UK], are also comprised by our assumptions. The variable of interest might not have finite fractional moment of any order and so, in particular, finite variance is not imposed. We allow for a wide range of degrees of persistence of shocks to conditional variance, allowing for both short and long memory.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6VC0-4VW5580-7/2/dc4e0dc0fb5a95c8ac7e035ef13706c7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Econometrics.

    Volume (Year): 151 (2009)
    Issue (Month): 2 (August)
    Pages: 190-200

    as
    in new window

    Handle: RePEc:eee:econom:v:151:y:2009:i:2:p:190-200
    Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    2. Brandt, Michael W. & Jones, Christopher S., 2006. "Volatility Forecasting With Range-Based EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 470-486, October.
    3. Zaffaroni, Paolo & d'Italia, Banca, 2003. "Gaussian inference on certain long-range dependent volatility models," Journal of Econometrics, Elsevier, vol. 115(2), pages 199-258, August.
    4. Rohit Deo & Clifford Hurvich & Yi Lu, 2005. "Forecasting Realized Volatility Using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment," Econometrics 0501002, EconWPA.
    5. Nour Meddahi & Éric Renault, 2000. "Temporal Aggregation of Volatility Models," CIRANO Working Papers 2000s-22, CIRANO.
    6. Giraitis, Liudas & Robinson, Peter M., 2001. "Whittle Estimation Of Arch Models," Econometric Theory, Cambridge University Press, vol. 17(03), pages 608-631, June.
    7. Peter M. Robinson & Carlos Velasco, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    8. Cheung, Yin-Wong & Diebold, Francis X., 1994. "On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean," Journal of Econometrics, Elsevier, vol. 62(2), pages 301-316, June.
    9. Hidalgo, J. & Yajima, Y., 2002. "Prediction And Signal Extraction Of Strongly Dependent Processes In The Frequency Domain," Econometric Theory, Cambridge University Press, vol. 18(03), pages 584-624, June.
    10. Paolo Zaffaroni, 2003. "Gaussian inference on certain long-range dependent volatility models," Temi di discussione (Economic working papers) 472, Bank of Italy, Economic Research and International Relations Area.
    11. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
    12. Robinson, P. M., 1978. "Alternative models for stationary stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 8(2), pages 141-152, December.
    13. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    15. Granger, C. W. J. & Andersen, Allan, 1978. "On the invertibility of time series models," Stochastic Processes and their Applications, Elsevier, vol. 8(1), pages 87-92, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:151:y:2009:i:2:p:190-200. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.