IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v151y2009i2p190-200.html
   My bibliography  Save this article

Whittle estimation of EGARCH and other exponential volatility models

Author

Listed:
  • Zaffaroni, Paolo

Abstract

The strong consistency and asymptotic normality of the Whittle estimate of the parameters in a class of exponential volatility processes are established. Our main focus here are the EGARCH model of [Nelson, D. 1991. Conditional heteroscedasticity in asset pricing: A new approach. Econometrica 59, 347-370] and other one-shock models such as the GJR model of [Glosten, L., Jaganathan, R., Runkle, D., 1993. On the relation between the expected value and the volatility of the nominal excess returns on stocks. Journal of Finance, 48, 1779-1801], but two-shock models, such as the SV model of [Taylor, S. 1986. Modelling Financial Time Series. Wiley, Chichester, UK], are also comprised by our assumptions. The variable of interest might not have finite fractional moment of any order and so, in particular, finite variance is not imposed. We allow for a wide range of degrees of persistence of shocks to conditional variance, allowing for both short and long memory.

Suggested Citation

  • Zaffaroni, Paolo, 2009. "Whittle estimation of EGARCH and other exponential volatility models," Journal of Econometrics, Elsevier, vol. 151(2), pages 190-200, August.
  • Handle: RePEc:eee:econom:v:151:y:2009:i:2:p:190-200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00082-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    2. Cheung, Yin-Wong & Diebold, Francis X., 1994. "On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean," Journal of Econometrics, Elsevier, vol. 62(2), pages 301-316, June.
    3. Brandt, Michael W. & Jones, Christopher S., 2006. "Volatility Forecasting With Range-Based EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 470-486, October.
    4. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
    5. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    6. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    7. Robinson, P. M., 1978. "Alternative models for stationary stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 8(2), pages 141-152, December.
    8. Hidalgo, J. & Yajima, Y., 2002. "Prediction And Signal Extraction Of Strongly Dependent Processes In The Frequency Domain," Econometric Theory, Cambridge University Press, vol. 18(03), pages 584-624, June.
    9. Zaffaroni, Paolo & d'Italia, Banca, 2003. "Gaussian inference on certain long-range dependent volatility models," Journal of Econometrics, Elsevier, vol. 115(2), pages 199-258, August.
    10. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    11. Paolo Zaffaroni, 2003. "Gaussian inference on certain long-range dependent volatility models," Temi di discussione (Economic working papers) 472, Bank of Italy, Economic Research and International Relations Area.
    12. Granger, C. W. J. & Andersen, Allan, 1978. "On the invertibility of time series models," Stochastic Processes and their Applications, Elsevier, vol. 8(1), pages 87-92, November.
    13. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    14. Giraitis, Liudas & Robinson, Peter M., 2001. "Whittle Estimation Of Arch Models," Econometric Theory, Cambridge University Press, vol. 17(03), pages 608-631, June.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
    2. repec:imd:wpaper:wp2010-25 is not listed on IDEAS
    3. Shelton Peiris & Manabu Asai & Michael McAleer, 2017. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 10(4), pages 1-16, December.
    4. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    5. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    6. Filip Žikeš & Jozef Baruník & Nikhil Shenai, 2017. "Modeling and forecasting persistent financial durations," Econometric Reviews, Taylor & Francis Journals, vol. 36(10), pages 1081-1110, November.
    7. Wintenberger, Olivier & Cai, Sixiang, 2011. "Parametric inference and forecasting in continuously invertible volatility models," MPRA Paper 31767, University Library of Munich, Germany.
    8. Ruiz Esther & Pérez Ana, 2012. "Maximally Autocorrelated Power Transformations: A Closer Look at the Properties of Stochastic Volatility Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-33, September.
    9. Kraicová Lucie & Baruník Jozef, 2017. "Estimation of long memory in volatility using wavelets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(3), pages 1-22, June.
    10. Hafner, Christian M. & Linton, Oliver, 2017. "An Almost Closed Form Estimator For The Egarch Model," Econometric Theory, Cambridge University Press, vol. 33(04), pages 1013-1038, August.
    11. Antonis Demos & Dimitra Kyriakopoulou, 2010. "Bias Correction of ML and QML Estimators in the EGARCH(1,1) Model," DEOS Working Papers 1108, Athens University of Economics and Business.
    12. Sucarrat, Genaro & Escribano, Álvaro, 2010. "The power log-GARCH model," UC3M Working papers. Economics we1013, Universidad Carlos III de Madrid. Departamento de Economía.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:151:y:2009:i:2:p:190-200. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.