IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

LARCH, Leverage, and Long Memory

  • Liudas Giraitis

We consider the long-memory and leverage properties of a model for the conditional variance V-sub-t-super-2 of an observable stationary sequence X-sub-t, where V-sub-t-super-2 is the square of an inhomogeneous linear combination of X-sub-s, s < t, with square summable weights b-sub-j. This model, which we call linear autoregressive conditionally heteroskedastic (LARCH), specializes, when V-sub-t-super-2 depends only on X-sub-t - 1, to the asymmetric ARCH model of Engle (1990, Review of Financial Studies 3, 103--106), and, when V-sub-t-super-2 depends only on finitely many X-sub-s, to a version of the quadratic ARCH model of Sentana (1995, Review of Economic Studies 62, 639--661), these authors having discussed leverage potential in such models. The model that we consider was suggested by Robinson (1991, Journal of Econometrics 47, 67--84), for use as a possibly long-memory conditionally heteroskedastic alternative to i.i.d. behavior, and further studied by Giraitis, Robinson and Surgailis (2000, Annals of Applied Probability 10, 1002--1004), who showed that integer powers X-sub-t-super-ℓ, ℓ ≥ 2 can have long-memory autocorrelations. We establish conditions under which the cross-autocovariance function between volatility and levels, h-sub-t = covV-sub-t-super-2,X-sub-0, decays in the manner of moving average weights of long-memory processes on suitable choice of the b-sub-j. We also establish the leverage property that h-sub-t < 0 for 0 < t ≤ k, where the value of k (which may be infinite) again depends on the b-sub-j. Conditions for finiteness of third and higher moments of X-sub-t are also established. Copyright 2004, Oxford University Press.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Society for Financial Econometrics in its journal Journal of Financial Econometrics.

Volume (Year): 2 (2004)
Issue (Month): 2 ()
Pages: 177-210

in new window

Handle: RePEc:oup:jfinec:v:2:y:2004:i:2:p:177-210
Contact details of provider: Postal:
Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK

Fax: 01865 267 985
Web page:

More information through EDIRC

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-96, May.
  2. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
  3. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
  4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  5. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  6. Antonis Demos, 2002. "Moments and dynamic structure of a time-varying parameter stochastic volatility in mean model," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 345-357, 06.
  7. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
  8. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  9. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  10. Changli He & Timo Terasvirta & Hans Malmsten, 1999. "Fourth Moment Structure of a Family of First-Order Exponential GARCH Models," Research Paper Series 29, Quantitative Finance Research Centre, University of Technology, Sydney.
  11. Wilfredo Palma & Mauricio Zevallos, 2004. "Analysis of the correlation structure of square time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 529-550, 07.
  12. Enrique Sentana, 1995. "Quadratic ARCH Models," Review of Economic Studies, Oxford University Press, vol. 62(4), pages 639-661.
  13. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  14. Jean-Philippe Bouchaud & Andrew Matacz & Marc Potters, 2001. "The leverage effect in financial markets: retarded volatility and market panic," Science & Finance (CFM) working paper archive 0101120, Science & Finance, Capital Fund Management.
  15. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  16. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  17. Liudas Giraitis & Peter M. Robinson & Donatas Surgailis, 2000. "A model for long memory conditional heteroscedasticity," LSE Research Online Documents on Economics 299, London School of Economics and Political Science, LSE Library.
  18. Comte, F. & Renault, E., 1996. "Long Memory in Continuous Time Stochastic Volatility Models," Papers 96.406, Toulouse - GREMAQ.
  19. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
  20. Liudas Giraitis & Peter Robinson & Donatas Surgailis, 2000. "A model for long memory conditional heteroscedasticity," LSE Research Online Documents on Economics 2103, London School of Economics and Political Science, LSE Library.
  21. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
  22. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
  23. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus, 2000. "Stationary Arch Models: Dependence Structure And Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 16(01), pages 3-22, February.
  24. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
  25. Y. K. Tse, 1998. "The conditional heteroscedasticity of the yen-dollar exchange rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 49-55.
  26. Liudas Giraitis & Peter M. Robinson, 2001. "Whittle estimation of ARCH models," LSE Research Online Documents on Economics 316, London School of Economics and Political Science, LSE Library.
  27. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
  28. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
  29. Giraitis, Liudas & Robinson, Peter M., 2001. "Whittle Estimation Of Arch Models," Econometric Theory, Cambridge University Press, vol. 17(03), pages 608-631, June.
  30. Engle, Robert F, 1990. "Stock Volatility and the Crash of '87: Discussion," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 103-06.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:2:y:2004:i:2:p:177-210. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.