Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Shelton Peiris & Manabu Asai & Michael McAleer, 2017. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," JRFM, MDPI, vol. 10(4), pages 1-16, December.
- Shelton Peiris & Manabu Asai & Michael McAleer, 2016. "Estimating and forecasting generalized fractional Long memory stochastic volatility models," Documentos de Trabajo del ICAE 2016-08, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Peiris, S. & Asai, M. & McAleer, M.J., 2016. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," Econometric Institute Research Papers EI2016-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
References listed on IDEAS
- Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011.
"Backtesting Value-at-Risk: A GMM Duration-Based Test,"
Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
- Gilbert COLLETAZ & Christophe HURLIN & Sessi TOKPAVI, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," LEO Working Papers / DR LEO 266, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363165, HAL.
- Candelon, B. & Colletaz, G. & Hurlin, C. & Tokpavi, S., 2009. "Backtesting value-at-risk : a GMM duration-based test," Research Memorandum 062, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Gilbert COLLETAZ & Christophe HURLIN & Sessi TOKPAVI, 2009. "Backtesting Value-at-Risk: A GMM Duration-Based Test," LEO Working Papers / DR LEO 265, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Post-Print halshs-00364793, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363168, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Post-Print halshs-00364797, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363146, HAL.
- Christophe Hurlin & Gilbert Colletaz & Sessi Tokpavi & Bertrand Candelon, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Working Papers halshs-00329495, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based-Test," Post-Print halshs-00364796, HAL.
- Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
- Peter Christoffersen, 2004.
"Backtesting Value-at-Risk: A Duration-Based Approach,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
- Peter Christoffersen & Denis Pelletier, 2003. "Backtesting Value-at-Risk: A Duration-Based Approach," CIRANO Working Papers 2003s-05, CIRANO.
- Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(4), pages 686-710, August.
- Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2002.
"Econometric analysis of realized volatility and its use in estimating stochastic volatility models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
- Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
- Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
- Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012.
"Asymmetry and Long Memory in Volatility Modeling,"
Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 495-512, June.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Asymmetry and Long Memory in Volatility Modelling," Working Papers in Economics 10/60, University of Canterbury, Department of Economics and Finance.
- Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Asymmetry and Long Memory in Volatility Modelling," Documentos de Trabajo del ICAE 2011-29, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Asymmetry and Long Memory in Volatility Modelling," KIER Working Papers 726, Kyoto University, Institute of Economic Research.
- Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996.
"Fractionally integrated generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
- Tom Doan, "undated". "RATS programs to replicate Baillie, Bollerslev, Mikkelson FIGARCH results," Statistical Software Components RTZ00009, Boston College Department of Economics.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(1), pages 232-261, February.
- Bordignon, Silvano & Caporin, Massimiliano & Lisi, Francesco, 2007. "Generalised long-memory GARCH models for intra-daily volatility," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5900-5912, August.
- Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
- Doornik, Jurgen A. & Ooms, Marius, 2003.
"Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models,"
Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
- Jurgen A. Doornik & Marius Ooms, 2001. "Computational Aspects of Maximum Likelihood Estimation of Autoregressive Fractionally Integrated Moving Average Models," Economics Papers 2001-W27, Economics Group, Nuffield College, University of Oxford.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Sandmann, Gleb & Koopman, Siem Jan, 1998.
"Estimation of stochastic volatility models via Monte Carlo maximum likelihood,"
Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
- Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
- Tom Doan, "undated". "RATS program to replicate Bollerslev-Mikkelson(1996) FIEGARCH models," Statistical Software Components RTZ00173, Boston College Department of Economics.
- Ching‐Fan Chung, 1996. "A Generalized Fractionally Integrated Autoregressive Moving‐Average Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(2), pages 111-140, March.
- Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
- Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
- Dissanayake, G.S. & Peiris, M.S. & Proietti, T., 2016. "State space modeling of Gegenbauer processes with long memory," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 115-130.
- Zaffaroni, Paolo, 2009. "Whittle estimation of EGARCH and other exponential volatility models," Journal of Econometrics, Elsevier, vol. 151(2), pages 190-200, August.
- Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
- M. Shelton Peiris & Manabu Asai, 2016. "Generalized Fractional Processes with Long Memory and Time Dependent Volatility Revisited," Econometrics, MDPI, vol. 4(3), pages 1-21, September.
- Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
- Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
- Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201. Full references (including those not matched with items on IDEAS)
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:- Shang, Yuhuang & Zheng, Tingguo, 2021. "Mixed-frequency SV model for stock volatility and macroeconomics," Economic Modelling, Elsevier, vol. 95(C), pages 462-472.
- Lahmiri, Salim & Bekiros, Stelios, 2020. "Nonlinear analysis of Casablanca Stock Exchange, Dow Jones and S&P500 industrial sectors with a comparison," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020.
"Realized stochastic volatility models with generalized Gegenbauer long memory,"
Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
- Asai, M. & McAleer, M.J. & Peiris, S., 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Econometric Institute Research Papers EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Shelton Peiris & Michael McAleer, 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Documentos de Trabajo del ICAE 2017-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer & Shelton Peiris, 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Tinbergen Institute Discussion Papers 17-105/III, Tinbergen Institute.
- Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017.
"Realized stochastic volatility with general asymmetry and long memory,"
Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
- Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Chia-Lin Chang & Michael McAleer, 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Tinbergen Institute Discussion Papers 17-038/III, Tinbergen Institute.
- Isao Ishida & Toshiaki Watanabe, 2009.
"Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model,"
CIRJE F-Series
CIRJE-F-608, CIRJE, Faculty of Economics, University of Tokyo.
- Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," Global COE Hi-Stat Discussion Paper Series gd08-032, Institute of Economic Research, Hitotsubashi University.
- Jensen Mark J., 2016.
"Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.
- Mark J. Jensen, 2015. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," FRB Atlanta Working Paper 2015-12, Federal Reserve Bank of Atlanta.
- Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
- Manabu Asai & Michael McAleer, 2017.
"A fractionally integrated Wishart stochastic volatility model,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Documentos de Trabajo del ICAE 2013-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," KIER Working Papers 848, Kyoto University, Institute of Economic Research.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Tinbergen Institute Discussion Papers 13-025/III, Tinbergen Institute.
- Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
- Lu, Yang K. & Perron, Pierre, 2010.
"Modeling and forecasting stock return volatility using a random level shift model,"
Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
- Yang K. Lu & Pierre Perron, 2008. "Modeling and Forecasting Stock Return Volatility Using a Random Level Shift Model," Boston University - Department of Economics - Working Papers Series wp2008-012, Boston University - Department of Economics.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005.
"Volatility forecasting,"
CFS Working Paper Series
2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Asai, Manabu & McAleer, Michael, 2015.
"Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance,"
Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Documentos de Trabajo del ICAE 2014-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012.
"Asymmetry and Long Memory in Volatility Modeling,"
Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 495-512, June.
- Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Asymmetry and Long Memory in Volatility Modelling," Working Papers in Economics 10/60, University of Canterbury, Department of Economics and Finance.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Asymmetry and Long Memory in Volatility Modelling," Documentos de Trabajo del ICAE 2011-29, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Asymmetry and Long Memory in Volatility Modelling," KIER Working Papers 726, Kyoto University, Institute of Economic Research.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002.
"Parametric and Nonparametric Volatility Measurement,"
Center for Financial Institutions Working Papers
02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," NBER Technical Working Papers 0279, National Bureau of Economic Research, Inc.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Martin, Gael M. & Nadarajah, K. & Poskitt, D.S., 2020.
"Issues in the estimation of mis-specified models of fractionally integrated processes,"
Journal of Econometrics, Elsevier, vol. 215(2), pages 559-573.
- K. Nadarajah & Gael M. Martin & D.S. Poskitt, 2014. "Issues in the Estimation of Mis-Specified Models of Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 18/14, Monash University, Department of Econometrics and Business Statistics.
- Gael M Martin & K. Nadarajah & Donald S Poskitt, 2018. "Issues in the estimation of mis-specified models of fractionally integrated processes," Monash Econometrics and Business Statistics Working Papers 18/18, Monash University, Department of Econometrics and Business Statistics.
- Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011.
"A reduced form framework for modeling volatility of speculative prices based on realized variation measures,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
- Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
- Proietti, Tommaso, 2014.
"Exponential Smoothing, Long Memory and Volatility Prediction,"
MPRA Paper
57230, University Library of Munich, Germany.
- Tommaso Proietti, 2015. "Exponential Smoothing, Long Memory and Volatility Prediction," CREATES Research Papers 2015-51, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," CEIS Research Paper 319, Tor Vergata University, CEIS, revised 30 Jul 2014.
- Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
- Borus Jungbacker & Siem Jan Koopman, 2006.
"Model-Based Measurement of Actual Volatility in High-Frequency Data,"
Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 183-210,
Emerald Group Publishing Limited.
- B. Jungbacker & S.J. Koopman, 2005. "Model-based Measurement of Actual Volatility in High-Frequency Data," Tinbergen Institute Discussion Papers 05-002/4, Tinbergen Institute.
- repec:lan:wpaper:592830 is not listed on IDEAS
- N. Antonakakis & J. Darby, 2013.
"Forecasting volatility in developing countries' nominal exchange returns,"
Applied Financial Economics, Taylor & Francis Journals, vol. 23(21), pages 1675-1691, November.
- Antonakakis, Nikolaos & Darby, Julia, 2012. "Forecasting Volatility in Developing Countries' Nominal Exchange Returns," MPRA Paper 40875, University Library of Munich, Germany.
More about this item
Keywords
Stochastic volatility; GARCH models; Gegenbauer Polynomial; Long Memory; Spectral Likelihood; Estimation; Forecasting;
All these keywords.JEL classification:
- C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2016-06-18 (Econometrics)
- NEP-ETS-2016-06-18 (Econometric Time Series)
- NEP-FOR-2016-06-18 (Forecasting)
- NEP-ORE-2016-06-18 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20160044. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.