IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v210y2025ics0040162524006449.html
   My bibliography  Save this article

Probabilistic electricity price forecasting by integrating interpretable model

Author

Listed:
  • Jiang, He
  • Dong, Yawei
  • Dong, Yao
  • Wang, Jianzhou

Abstract

The establishment of a high-quality and efficient interpretable probability prediction model is crucial for the development of the electricity market. However, challenges related to prediction instability and interpretability limit electricity price probability forecasting. To address these issues, we propose a novel interpretable electricity price probability prediction model, L-NBeatsX, which incorporates a multifactor pathway. Initially, by adaptively fusing NBeatsX and LassoNet models, we effectively handle the multifactor nature of electricity price prediction. The fusion mechanism enables L-NBeatsX to utilize a subset of features, thereby enhancing both accuracy and interpretability. Furthermore, the integration of skip connections from input to output in the fusion process enhances the robustness and flexibility of L-NBeatsX predictions. Additionally, we introduce unstable correction factors into the loss function to improve the model’s adaptability in probability prediction. By mitigating the impact of instability factors, we effectively reduce the cost of prediction instability while improving the accuracy and reliability of results. Empirical studies conducted across four distinct electricity markets demonstrate the superior performance of L-NBeatsX in electricity price probability forecasting, providing valuable insights for decision-making in the electricity market.

Suggested Citation

  • Jiang, He & Dong, Yawei & Dong, Yao & Wang, Jianzhou, 2025. "Probabilistic electricity price forecasting by integrating interpretable model," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:tefoso:v:210:y:2025:i:c:s0040162524006449
    DOI: 10.1016/j.techfore.2024.123846
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524006449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
    2. Janczura, Joanna & Wójcik, Edyta, 2022. "Dynamic short-term risk management strategies for the choice of electricity market based on probabilistic forecasts of profit and risk measures. The German and the Polish market case study," Energy Economics, Elsevier, vol. 110(C).
    3. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    4. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    5. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    6. He Jiang & Weihua Zheng, 2022. "Deep learning with regularized robust long‐ and short‐term memory network for probabilistic short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1201-1216, September.
    7. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    8. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    9. Ziel, Florian & Steinert, Rick, 2018. "Probabilistic mid- and long-term electricity price forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 251-266.
    10. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    11. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
    12. Lebotsa, Moshoko Emily & Sigauke, Caston & Bere, Alphonce & Fildes, Robert & Boylan, John E., 2018. "Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem," Applied Energy, Elsevier, vol. 222(C), pages 104-118.
    13. Tim Janke & Florian Steinke, 2020. "Probabilistic multivariate electricity price forecasting using implicit generative ensemble post-processing," Papers 2005.13417, arXiv.org.
    14. Cornell, Cameron & Dinh, Nam Trong & Pourmousavi, S. Ali, 2024. "A probabilistic forecast methodology for volatile electricity prices in the Australian National Electricity Market," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1421-1437.
    15. Rafal Weron, 2014. "A review of electricity price forecasting: The past, the present and the future," HSC Research Reports HSC/14/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    16. Krishna Prakash N. & Jai Govind Singh, 2023. "Electricity price forecasting using hybrid deep learned networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1750-1771, November.
    17. Mashlakov, Aleksei & Kuronen, Toni & Lensu, Lasse & Kaarna, Arto & Honkapuro, Samuli, 2021. "Assessing the performance of deep learning models for multivariate probabilistic energy forecasting," Applied Energy, Elsevier, vol. 285(C).
    18. Kostrzewski, Maciej & Kostrzewska, Jadwiga, 2019. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models," Energy Economics, Elsevier, vol. 80(C), pages 610-620.
    19. Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023. "Optimal reconciliation with immutable forecasts," European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
    20. Nystrup, Peter & Lindström, Erik & Pinson, Pierre & Madsen, Henrik, 2020. "Temporal hierarchies with autocorrelation for load forecasting," European Journal of Operational Research, Elsevier, vol. 280(3), pages 876-888.
    21. Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
    22. Cramer, Eike & Witthaut, Dirk & Mitsos, Alexander & Dahmen, Manuel, 2023. "Multivariate probabilistic forecasting of intraday electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 346(C).
    23. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    24. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    25. Li, Ranran & Jin, Yu, 2018. "A wind speed interval prediction system based on multi-objective optimization for machine learning method," Applied Energy, Elsevier, vol. 228(C), pages 2207-2220.
    26. De Baets, Shari & Harvey, Nigel, 2020. "Using judgment to select and adjust forecasts from statistical models," European Journal of Operational Research, Elsevier, vol. 284(3), pages 882-895.
    27. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    28. Florian Ziel & Rick Steinert, 2017. "Probabilistic Mid- and Long-Term Electricity Price Forecasting," Papers 1703.10806, arXiv.org, revised May 2018.
    29. Nadja Klein & Michael Stanley Smith & David J. Nott, 2023. "Deep distributional time series models and the probabilistic forecasting of intraday electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 493-511, June.
    30. Michael W. McCracken, 2019. "Tests of Conditional Predictive Ability: Some Simulation Evidence," Working Papers 2019-11, Federal Reserve Bank of St. Louis.
    31. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    32. Grothe, Oliver & Kächele, Fabian & Krüger, Fabian, 2023. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 120(C).
    33. Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    2. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    3. Lipiecki, Arkadiusz & Uniejewski, Bartosz & Weron, Rafał, 2024. "Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression," Energy Economics, Elsevier, vol. 139(C).
    4. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    5. Agakishiev, Ilyas & Härdle, Wolfgang Karl & Kopa, Milos & Kozmik, Karel & Petukhina, Alla, 2025. "Multivariate probabilistic forecasting of electricity prices with trading applications," Energy Economics, Elsevier, vol. 141(C).
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    8. Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.
    9. Tomasz Serafin & Bartosz Uniejewski & Rafał Weron, 2019. "Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 12(13), pages 1-12, July.
    10. Maticka, Martin J. & Mahmoud, Thair S., 2025. "Bayesian Belief Networks: Redefining wholesale electricity price modelling in high penetration non-firm renewable generation power systems," Renewable Energy, Elsevier, vol. 239(C).
    11. Stephen Haben & Julien Caudron & Jake Verma, 2021. "Probabilistic Day-Ahead Wholesale Price Forecast: A Case Study in Great Britain," Forecasting, MDPI, vol. 3(3), pages 1-37, August.
    12. Nickelsen, Daniel & Müller, Gernot, 2025. "Bayesian hierarchical probabilistic forecasting of intraday electricity prices," Applied Energy, Elsevier, vol. 380(C).
    13. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    14. Hilger, Hannes & Witthaut, Dirk & Dahmen, Manuel & Rydin Gorjão, Leonardo & Trebbien, Julius & Cramer, Eike, 2024. "Multivariate scenario generation of day-ahead electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 367(C).
    15. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    16. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    17. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    18. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    19. Serafin, Tomasz & Marcjasz, Grzegorz & Weron, Rafał, 2022. "Trading on short-term path forecasts of intraday electricity prices," Energy Economics, Elsevier, vol. 112(C).
    20. Elmore, Clay T. & Dowling, Alexander W., 2021. "Learning spatiotemporal dynamics in wholesale energy markets with dynamic mode decomposition," Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:210:y:2025:i:c:s0040162524006449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.