IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v280y2020i3p876-888.html
   My bibliography  Save this article

Temporal hierarchies with autocorrelation for load forecasting

Author

Listed:
  • Nystrup, Peter
  • Lindström, Erik
  • Pinson, Pierre
  • Madsen, Henrik

Abstract

We propose four different estimators that take into account the autocorrelation structure when reconciling forecasts in a temporal hierarchy. Combining forecasts from multiple temporal aggregation levels exploits information differences and mitigates model uncertainty, while reconciliation ensures a unified prediction that supports aligned decisions at different horizons. In previous studies, weights assigned to the forecasts were given by the structure of the hierarchy or the forecast error variances without considering potential autocorrelation in the forecast errors. Our first estimator considers the autocovariance matrix within each aggregation level. Since this can be difficult to estimate, we propose a second estimator that blends autocorrelation and variance information, but only requires estimation of the first-order autocorrelation coefficient at each aggregation level. Our third and fourth estimators facilitate information sharing between aggregation levels using robust estimates of the cross-correlation matrix and its inverse. We compare the proposed estimators in a simulation study and demonstrate their usefulness through an application to short-term electricity load forecasting in four price areas in Sweden. We find that by taking account of auto- and cross-covariances when reconciling forecasts, accuracy can be significantly improved uniformly across all frequencies and areas.

Suggested Citation

  • Nystrup, Peter & Lindström, Erik & Pinson, Pierre & Madsen, Henrik, 2020. "Temporal hierarchies with autocorrelation for load forecasting," European Journal of Operational Research, Elsevier, vol. 280(3), pages 876-888.
  • Handle: RePEc:eee:ejores:v:280:y:2020:i:3:p:876-888
    DOI: 10.1016/j.ejor.2019.07.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171930640X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.07.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:280:y:2020:i:3:p:876-888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.