IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v215y2025ics0040162525001258.html
   My bibliography  Save this article

Enhancing economic cycle forecasting based on interpretable machine learning and news narrative sentiment

Author

Listed:
  • Sun, Weixin
  • Wang, Yong
  • Zhang, Li
  • Chen, Xihui Haviour
  • Hoang, Yen Hai

Abstract

The growing prevalence of uncertainty in global events poses significant challenges to economic cycle forecasting, emphasizing the need for more robust predictive models. This study addresses this gap by developing a novel forecasting framework that integrates multiple uncertainty indices to improve accuracy, stability, and interpretability, particularly during uncertainty shocks. To achieve this, several methodological innovations were implemented. First, news sentiment-based uncertainty indices were incorporated as candidate variables to capture uncertainty dynamics. Second, Bayesian least absolute shrinkage and selection operator (Bayesian LASSO) was employed for efficient variable selection, mitigating the curse of dimensionality in small samples. Third, the multi-objective Lichtenberg algorithm (MOLA) was applied to optimize the prediction window size, ensuring model robustness. Additionally, a MOLA-based extreme gradient boosting (MOLA-XGBoost) model was developed to fine-tune hyperparameters across dimensions of prediction accuracy, stability, and directional consistency. Finally, SHapley Additive exPlanations (SHAP) theory was used to enhance model interpretability. This study forecasts China's economic cycle using multiple indicators, demonstrating that the proposed approach consistently delivers accurate and robust predictions even under uncertainty shocks. The findings highlight the crucial role of uncertainty indices in improving economic forecasts, offering new insights and methodologies for predictive modeling in volatile environments.

Suggested Citation

  • Sun, Weixin & Wang, Yong & Zhang, Li & Chen, Xihui Haviour & Hoang, Yen Hai, 2025. "Enhancing economic cycle forecasting based on interpretable machine learning and news narrative sentiment," Technological Forecasting and Social Change, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:tefoso:v:215:y:2025:i:c:s0040162525001258
    DOI: 10.1016/j.techfore.2025.124094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162525001258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2025.124094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Zhang, Qun & Zhang, Zhendong & Luo, Jiawen, 2024. "Asymmetric and high-order risk transmission across VIX and Chinese futures markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    3. Dang, Tam Hoang-Nhat & Nguyen, Canh Phuc & Lee, Gabriel S. & Nguyen, Binh Quang & Le, Thuy Thu, 2023. "Measuring the energy-related uncertainty index," Energy Economics, Elsevier, vol. 124(C).
    4. Wu, Guo & Hu, Guoheng, 2024. "Asymmetric spillovers and resilience in physical and financial assets amid climate policy uncertainties: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    5. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    6. Batra, Shallu & Tiwari, Aviral Kumar & Yadav, Mahender & Danso, Albert, 2025. "Connectedness among diverse financial assets: Evidence from cryptocurrency uncertainty indices," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    7. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    8. Aprigliano, Valentina & Emiliozzi, Simone & Guaitoli, Gabriele & Luciani, Andrea & Marcucci, Juri & Monteforte, Libero, 2023. "The power of text-based indicators in forecasting Italian economic activity," International Journal of Forecasting, Elsevier, vol. 39(2), pages 791-808.
    9. Hites Ahir & Nicholas Bloom & Davide Furceri, 2022. "The world uncertainty index," POID Working Papers 031, Centre for Economic Performance, LSE.
    10. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    11. Jiang, Yu, 2020. "Identification of business cycles and the Great Moderation in the post-war U.S. economy," Economics Letters, Elsevier, vol. 190(C).
    12. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    13. Al-Thaqeb, Saud Asaad & Algharabali, Barrak Ghanim, 2019. "Economic policy uncertainty: A literature review," The Journal of Economic Asymmetries, Elsevier, vol. 20(C).
    14. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    15. Nazemi, Abdolreza & Fabozzi, Frank J., 2024. "Interpretable machine learning for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 164(C).
    16. Asgharian, Hossein & Christiansen, Charlotte & Hou, Ai Jun, 2023. "The effect of uncertainty on stock market volatility and correlation," Journal of Banking & Finance, Elsevier, vol. 154(C).
    17. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    18. Lu, Fei & Ma, Feng & Feng, Lin, 2024. "Carbon dioxide emissions and economic growth: New evidence from GDP forecasting," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    19. Aysan, Ahmet Faruk & Batten, Jonathan A. & Gozgor, Giray & Khalfaoui, Rabeh & Nanaeva, Zhamal, 2023. "Twitter matters for metaverse stocks amid economic uncertainty," Finance Research Letters, Elsevier, vol. 56(C).
    20. Sun, Weixin & Zhang, Xuantao & Li, Minghao & Wang, Yong, 2023. "Interpretable high-stakes decision support system for credit default forecasting," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    21. Jiang, He & Dong, Yawei & Dong, Yao & Wang, Jianzhou, 2025. "Probabilistic electricity price forecasting by integrating interpretable model," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    22. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    23. Chris Hans, 2009. "Bayesian lasso regression," Biometrika, Biometrika Trust, vol. 96(4), pages 835-845.
    24. Chishti, Muhammad Zubair & Dogan, Eyup & Binsaeed, Rima H., 2024. "Can artificial intelligence and green finance affect economic cycles?," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    25. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    26. Zhang, Xincheng, 2024. "Country-level energy-related uncertainties and stock market returns: Insights from the U.S. and China," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    27. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    28. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    29. Yinghao Chen & Xiaoliang Xie & Tianle Zhang & Jiaxian Bai & Muzhou Hou, 2020. "A deep residual compensation extreme learning machine and applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 986-999, September.
    30. Wen, Fenghua & Li, Cui & Sha, Han & Shao, Liuguo, 2021. "How does economic policy uncertainty affect corporate risk-taking? Evidence from China," Finance Research Letters, Elsevier, vol. 41(C).
    31. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    32. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
    33. Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
    34. Naveed, Hafiz Muhammad & HongXing, Yao & Memon, Bilal Ahmed & Ali, Shoaib & Alhussam, Mohammed Ismail & Sohu, Jan Muhammad, 2023. "Artificial neural network (ANN)-based estimation of the influence of COVID-19 pandemic on dynamic and emerging financial markets," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    35. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    36. McSharry, Patrick & Mawejje, Joseph, 2024. "Estimating urban GDP growth using nighttime lights and machine learning techniques in data poor environments: The case of South Sudan," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    37. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    38. Duan, Yuejiao & Goodell, John W. & Li, Haoran & Li, Xinming, 2022. "Assessing machine learning for forecasting economic risk: Evidence from an expanded Chinese financial information set," Finance Research Letters, Elsevier, vol. 46(PA).
    39. Li, Wei-Xuan & French, Joseph J. & Chen, Clara Chia-Sheng, 2017. "Informed trading in S&P index options? Evidence from the 2008 financial crisis," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 40-65.
    40. Wang, Bo & Xiao, Yang, 2023. "The term effect of financial cycle variables on GDP growth," Journal of International Money and Finance, Elsevier, vol. 139(C).
    41. Sharpe, Steven A. & Sinha, Nitish R. & Hollrah, Christopher A., 2023. "The power of narrative sentiment in economic forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1097-1121.
    42. He, Feng & Ma, Yaming & Zhang, Xiaojie, 2020. "How does economic policy uncertainty affect corporate Innovation?–Evidence from China listed companies," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 225-239.
    43. Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
    44. Feng Ma & Xinjie Lu & Lu Wang & Julien Chevallier, 2021. "Global economic policy uncertainty and gold futures market volatility: Evidence from Markov regime‐switching GARCH‐MIDAS models," Post-Print halshs-04250272, HAL.
    45. Fang, Jianchun & Gozgor, Giray & Lau, Chi-Keung Marco & Lu, Zhou, 2020. "The impact of Baidu Index sentiment on the volatility of China's stock markets," Finance Research Letters, Elsevier, vol. 32(C).
    46. Gupta, Rangan & Pierdzioch, Christian & Salisu, Afees A., 2022. "Oil-price uncertainty and the U.K. unemployment rate: A forecasting experiment with random forests using 150 years of data," Resources Policy, Elsevier, vol. 77(C).
    47. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    48. Vo, Duc Hong & Tran, Minh Phuoc-Bao, 2024. "Volatility spillovers between energy and agriculture markets during the ongoing food & energy crisis: Does uncertainty from the Russo-Ukrainian conflict matter?," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    49. Liu, Na & Gao, Fumin, 2022. "The world uncertainty index and GDP growth rate," Finance Research Letters, Elsevier, vol. 49(C).
    50. Dai, Zhifeng & Zhang, Xiaotong & Liang, Chao, 2024. "Efficient predictability of oil price: The role of VIX-based panic index shadow line difference," Energy Economics, Elsevier, vol. 129(C).
    51. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    52. Döpke, Jörg & Müller, Karsten & Tegtmeier, Lars, 2018. "The economic value of business cycle forecasts for potential investors – Evidence from Germany," Research in International Business and Finance, Elsevier, vol. 46(C), pages 445-461.
    53. Lu, Fei & Ma, Feng & Hu, Shiyang, 2024. "Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting," Energy Economics, Elsevier, vol. 129(C).
    54. Feng Ma & Xinjie Lu & Lu Wang & Julien Chevallier, 2021. "Global economic policy uncertainty and gold futures market volatility: Evidence from Markov regime‐switching GARCH‐MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1070-1085, September.
    55. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Xueping & Zhong, Yiran & Vivian, Andrew & Geng, Yong & Wang, Ziyi & Zhao, Difei, 2024. "Towards an era of multi-source uncertainty: A systematic and bibliometric analysis," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    2. Jésus Fernández-Villaverde & Tomohide Mineyama & Dongho Song & Jesús Fernández-Villaverde, 2024. "Are We Fragmented Yet? Measuring Geopolitical Fragmentation and Its Causal Effects," CESifo Working Paper Series 11192, CESifo.
    3. Huang, Xinhui & Yang, Lukai, 2025. "Balancing the books: The role of energy-related uncertainty in corporate leverage," Global Finance Journal, Elsevier, vol. 64(C).
    4. Liu, Yang & Swanson, Norman R., 2024. "An assessment of the marginal predictive content of economic uncertainty indexes and business conditions predictors," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1391-1409.
    5. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    6. Ioannis Dokas & Georgios Oikonomou & Minas Panagiotidis & Eleftherios Spyromitros, 2023. "Macroeconomic and Uncertainty Shocks’ Effects on Energy Prices: A Comprehensive Literature Review," Energies, MDPI, vol. 16(3), pages 1-35, February.
    7. Liu, Na & Gao, Fumin, 2022. "The world uncertainty index and GDP growth rate," Finance Research Letters, Elsevier, vol. 49(C).
    8. Tamilselvan, M. & Halder, Abhishek & Kannadhasan, M., 2024. "Exploring the ingredients, mixtures, and inclinations of geopolitical risk," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 187-206.
    9. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    10. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia & Brzeszczyński, Janusz, 2025. "Energy in turmoil: Industry resilience to uncertainty during the global energy crisis," Applied Energy, Elsevier, vol. 389(C).
    11. Hong, Yun & Zhang, Rushan & Zhang, Feipeng, 2024. "Time-varying causality impact of economic policy uncertainty on stock market returns: Global evidence from developed and emerging countries," International Review of Financial Analysis, Elsevier, vol. 91(C).
    12. Haining Chen & Prince Asare Vitenu-Sackey & Isaac Akpemah Bathuure, 2024. "Uncertainty Measures and Business Cycles: Evidence From the US," SAGE Open, , vol. 14(2), pages 21582440241, April.
    13. Ito, Asei & Lim, Jaehwan & Zhang, Hongyong, 2023. "Catching the political leader's signal: Economic policy uncertainty and firm investment in China," China Economic Review, Elsevier, vol. 81(C).
    14. Che, Ming & Zhu, Zixiang & Li, Yujia, 2023. "Geopolitical risk and economic policy uncertainty: Different roles in China's financial cycle," International Review of Financial Analysis, Elsevier, vol. 90(C).
    15. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    16. Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2023. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Papers 2401.00249, arXiv.org, revised Jul 2024.
    17. Liu, Xinheng & Pan, Sishi & Li, Shuxian & Yang, Xin & Huang, Chuangxia, 2024. "Unraveling the causal impact: Oil price uncertainty on firms’ productivity in China," Resources Policy, Elsevier, vol. 96(C).
    18. Choi, Sun-Yong & Hadad, Elroi, 2025. "The dynamic relationship among economic and monetary policy, geopolitical risk, sentiment, and risk aversion: A TVP-VAR approach," Finance Research Letters, Elsevier, vol. 72(C).
    19. Ma, Yong & Li, Shuaibing & Zhou, Mingtao, 2024. "Forecasting crude oil prices: Does global financial uncertainty matter?," International Review of Economics & Finance, Elsevier, vol. 96(PC).
    20. Chen, Shuiyang & Meng, Bin & Qiu, Bingcheng & Kuang, Haibo, 2025. "Dynamic effects of maritime risk on macroeconomic and global maritime economic activity," Transport Policy, Elsevier, vol. 167(C), pages 246-263.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:215:y:2025:i:c:s0040162525001258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.