IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v76y2014i4p510-535.html

Does the Macroeconomy Predict UK Asset Returns in a Nonlinear Fashion? Comprehensive Out-of-Sample Evidence

Author

Listed:
  • Massimo Guidolin
  • Stuart Hyde
  • David McMillan
  • Sadayuki Ono

Abstract

type="main" xml:id="obes12035-abs-0001"> We perform a comprehensive examination of the recursive, comparative predictive performance of linear and nonlinear models for UK stock and bond returns. We estimate Markov switching, threshold autoregressive (TAR) and smooth transition autoregressive (STR) regime switching models and a range of linear specifications including models with GARCH type specifications. Results demonstrate UK asset returns require nonlinear dynamics to be modelled with strong evidence in favour of Markov switching frameworks. Our results appear robust to the choice of sample period, changes in loss functions and to the methodology employed to test for equal predictive accuracy. The key findings extend to a similar sample of US data.

Suggested Citation

  • Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2014. "Does the Macroeconomy Predict UK Asset Returns in a Nonlinear Fashion? Comprehensive Out-of-Sample Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(4), pages 510-535, August.
  • Handle: RePEc:bla:obuest:v:76:y:2014:i:4:p:510-535
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/obes.2014.76.issue-4
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sensoy, Ahmet & Aras, Guler & Hacihasanoglu, Erk, 2015. "Predictability dynamics of Islamic and conventional equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 222-248.
    2. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    3. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2025. "Forecasting realised volatility using regime-switching models," International Review of Economics & Finance, Elsevier, vol. 101(C).
    4. Mustafa Demirel & Gazanfer Unal, 2020. "Applying multivariate-fractionally integrated volatility analysis on emerging market bond portfolios," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-29, December.
    5. Gebka, Bartosz, 2025. "Explaining the causality between trading volume and stock returns: What drives its cross-quantile patterns?," Economic Modelling, Elsevier, vol. 148(C).
    6. Rangan Gupta & Shawkat Hammoudeh & Beatrice D. Simo-Kengne & Soodabeh Sarafrazi, 2014. "Can the Sharia-based Islamic stock market returns be forecasted using large number of predictors and models?," Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1147-1157, September.
    7. Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
    8. Álvarez-Díaz, Marcos & Hammoudeh, Shawkat & Gupta, Rangan, 2014. "Detecting predictable non-linear dynamics in Dow Jones Islamic Market and Dow Jones Industrial Average indices using nonparametric regressions," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 22-35.
    9. Marcos Álvarez-Díaz & Shawkat Hammoudeh & Rangan Gupta, 2013. "Detecting Predictable Non-linear Dynamics in Dow Jones Industrial Average and Dow Jones Islamic Market Indices using Nonparametric Regressions," Working Papers 201385, University of Pretoria, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:76:y:2014:i:4:p:510-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.