IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v148y2025ics0264999325000720.html
   My bibliography  Save this article

Explaining the causality between trading volume and stock returns: What drives its cross-quantile patterns?

Author

Listed:
  • Gebka, Bartosz

Abstract

This study investigates the impact of trading volume on future stock returns, addressing the gap in the literature as to why such causality has previously been found to be of varying signs and magnitudes. Using data from the US covering the period 10/1973-12/2018, we employ quantile regressions to empirically examine if the volume-return causality is driven by informed trading, investors’ liquidity needs, sentiment, or uncertainty. Our analysis reveals that sentiment and the prevalence of informed trading, especially on good news, significantly explain the observed cross-quantile volume-return causality pattern. These findings offer new insights into how stock trading, driven by irrational sentiment and following informed investors, causes temporary imbalances and future price reversals, highlighting the importance of investor irrationality, insider trading, but also illiquidity and imperfect arbitrage, for asset price behaviour. Our results provide implications for risk management, return and volatility forecasting, and regulation of insider trading and information provision.

Suggested Citation

  • Gebka, Bartosz, 2025. "Explaining the causality between trading volume and stock returns: What drives its cross-quantile patterns?," Economic Modelling, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:ecmode:v:148:y:2025:i:c:s0264999325000720
    DOI: 10.1016/j.econmod.2025.107077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999325000720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2025.107077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Acharya, Viral V. & Pedersen, Lasse Heje, 2005. "Asset pricing with liquidity risk," Journal of Financial Economics, Elsevier, vol. 77(2), pages 375-410, August.
    2. Jeffrey Wurgler & Ekaterina Zhuravskaya, 2002. "Does Arbitrage Flatten Demand Curves for Stocks?," The Journal of Business, University of Chicago Press, vol. 75(4), pages 583-608, October.
    3. Fang, Hao & Chung, Chien-Ping & Lu, Yang-Cheng & Lee, Yen-Hsien & Wang, Wen-Hao, 2021. "The impacts of investors' sentiments on stock returns using fintech approaches," International Review of Financial Analysis, Elsevier, vol. 77(C).
    4. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    5. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    6. Manahov, Viktor & Hudson, Robert & Linsley, Philip, 2014. "New evidence about the profitability of small and large stocks and the role of volume obtained using Strongly Typed Genetic Programming," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 299-316.
    7. Michael J. Brennan & Sahn-Wook Huh & Avanidhar Subrahmanyam, 2016. "Asymmetric Effects of Informed Trading on the Cost of Equity Capital," Management Science, INFORMS, vol. 62(9), pages 2460-2480, September.
    8. Bekaert, Geert & Hoerova, Marie & Lo Duca, Marco, 2013. "Risk, uncertainty and monetary policy," Journal of Monetary Economics, Elsevier, vol. 60(7), pages 771-788.
    9. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    10. Sentana, Enrique & Wadhwani, Sushil B, 1992. "Feedback Traders and Stock Return Autocorrelations: Evidence from a Century of Daily Data," Economic Journal, Royal Economic Society, vol. 102(411), pages 415-425, March.
    11. McMillan, David G., 2007. "Non-linear forecasting of stock returns: Does volume help?," International Journal of Forecasting, Elsevier, vol. 23(1), pages 115-126.
    12. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "Twitter’s daily happiness sentiment and international stock returns: Evidence from linear and nonlinear causality tests," Journal of Behavioral and Experimental Finance, Elsevier, vol. 18(C), pages 50-53.
    13. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2014. "Does the Macroeconomy Predict UK Asset Returns in a Nonlinear Fashion? Comprehensive Out-of-Sample Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(4), pages 510-535, August.
    14. Markus K. Brunnermeier & Lasse Heje Pedersen, 2009. "Market Liquidity and Funding Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
    15. Cooper, Michael, 1999. "Filter Rules Based on Price and Volume in Individual Security Overreaction," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 901-935.
    16. Ngene, Geoffrey M. & Mungai, Ann Nduati, 2022. "Stock returns, trading volume, and volatility: The case of African stock markets," International Review of Financial Analysis, Elsevier, vol. 82(C).
    17. Tauchen, George & Zhang, Harold & Liu, Ming, 1996. "Volume, volatility, and leverage: A dynamic analysis," Journal of Econometrics, Elsevier, vol. 74(1), pages 177-208, September.
    18. Thomas C. Chiang & Zhuo Qiao & Wing-Keung Wong, 2010. "New evidence on the relation between return volatility and trading volume," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 502-515.
    19. Le, Van & Zurbruegg, Ralf, 2010. "The role of trading volume in volatility forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 533-555, December.
    20. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    21. Yousaf, Imran & Yarovaya, Larisa, 2022. "The relationship between trading volume, volatility and returns of Non-Fungible Tokens: evidence from a quantile approach," Finance Research Letters, Elsevier, vol. 50(C).
    22. Jiang, Shangwei & Jin, Xiu, 2021. "Effects of investor sentiment on stock return volatility: A spatio-temporal dynamic panel model," Economic Modelling, Elsevier, vol. 97(C), pages 298-306.
    23. Marquering, Wessel & Verbeek, Marno, 2004. "The Economic Value of Predicting Stock Index Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 407-429, June.
    24. Glosten, Lawrence R. & Harris, Lawrence E., 1988. "Estimating the components of the bid/ask spread," Journal of Financial Economics, Elsevier, vol. 21(1), pages 123-142, May.
    25. Bajzik, Josef, 2021. "Trading volume and stock returns: A meta-analysis," International Review of Financial Analysis, Elsevier, vol. 78(C).
    26. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    27. Xu, Liao & Gao, Han & Shi, Yukun & Zhao, Yang, 2020. "The heterogeneous volume-volatility relations in the exchange-traded fund market: Evidence from China," Economic Modelling, Elsevier, vol. 85(C), pages 400-408.
    28. Anirut Pisedtasalasai & Abeyratna Gunasekarage, 2007. "Causal and Dynamic Relationships among Stock Returns, Return Volatility and Trading Volume: Evidence from Emerging markets in South-East Asia," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(4), pages 277-297, December.
    29. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    30. Robert J. Shiller, 1984. "Stock Prices and Social Dynamics," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 15(2), pages 457-510.
    31. Gebka, Bartosz & Wohar, Mark E., 2013. "Causality between trading volume and returns: Evidence from quantile regressions," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 144-159.
    32. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    33. Foster, F Douglas & Viswanathan, S, 1993. "Variations in Trading Volume, Return Volatility, and Trading Costs: Evidence on Recent Price Formation Models," Journal of Finance, American Finance Association, vol. 48(1), pages 187-211, March.
    34. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    35. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    36. Kandel, Eugene & Pearson, Neil D, 1995. "Differential Interpretation of Public Signals and Trade in Speculative Markets," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 831-872, August.
    37. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    38. Jonathan Batten & Brian Lucey & Frank McGroarty & Maurice Peat & Andrew Urquhart, 2017. "Stylized facts of intraday precious metals," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-21, April.
    39. Gregory W. Brown & Michael T. Cliff, 2005. "Investor Sentiment and Asset Valuation," The Journal of Business, University of Chicago Press, vol. 78(2), pages 405-440, March.
    40. Guillermo Llorente & Roni Michaely & Gideon Saar & Jiang Wang, 2002. "Dynamic Volume-Return Relation of Individual Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1005-1047.
    41. Chen, Hong-Yi & Lee, Alice C. & Lee, Cheng-Few, 2015. "Alternative errors-in-variables models and their applications in finance research," The Quarterly Review of Economics and Finance, Elsevier, vol. 58(C), pages 213-227.
    42. Meir Statman & Steven Thorley & Keith Vorkink, 2006. "Investor Overconfidence and Trading Volume," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1531-1565.
    43. Lan, Yueqin & Huang, Yong & Yan, Chao, 2021. "Investor sentiment and stock price: Empirical evidence from Chinese SEOs," Economic Modelling, Elsevier, vol. 94(C), pages 703-714.
    44. Nonejad, Nima, 2017. "Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why?," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 131-154.
    45. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    46. Schmeling, Maik, 2009. "Investor sentiment and stock returns: Some international evidence," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 394-408, June.
    47. Yunqi Fan & Fangzhao Zhou & Yunbi An & Jun Yang, 2021. "Investor Sentiment and Stock Price Crash Risk: Evidence from China," Global Economic Review, Taylor & Francis Journals, vol. 50(4), pages 310-339, October.
    48. Koubaa, Yosra & Slim, Skander, 2019. "The relationship between trading activity and stock market volatility: Does the volume threshold matter?," Economic Modelling, Elsevier, vol. 82(C), pages 168-184.
    49. Lee, Bong-Soo & Rui, Oliver M., 2002. "The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence," Journal of Banking & Finance, Elsevier, vol. 26(1), pages 51-78, January.
    50. Costas Milas & Theodore Panagiotidis & Theologos Dergiades, 2021. "Does It Matter Where You Search? Twitter versus Traditional News Media," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(7), pages 1757-1795, October.
    51. Hsin-Yi Lin, 2013. "Dynamic Stock Return–Volume Relation: Evidence From Emerging Asian Markets," Bulletin of Economic Research, Wiley Blackwell, vol. 65(2), pages 178-193, April.
    52. He, Hua & Wang, Jiang, 1995. "Differential Information and Dynamic Behavior of Stock Trading Volume," The Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 919-972.
    53. Liya Chu & Xue-Zhong He & Kai Li & Jun Tu, 2022. "Investor Sentiment and Paradigm Shifts in Equity Return Forecasting," Management Science, INFORMS, vol. 68(6), pages 4301-4325, June.
    54. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    55. Song, Ziyu & Gong, Xiaomin & Zhang, Cheng & Yu, Changrui, 2023. "Investor sentiment based on scaled PCA method: A powerful predictor of realized volatility in the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 528-545.
    56. Whitney Newey & Kenneth West, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    57. Florentina Şoiman & Jean-Guillaume Dumas & Sonia Jimenez-Garces, 2023. "What drives DeFi market returns? [Quels sont les facteurs qui déterminent les rendements du marché DeFi ?]," Post-Print hal-03625891, HAL.
    58. Wenjie Ding & Khelifa Mazouz & Qingwei Wang, 2019. "Investor sentiment and the cross-section of stock returns: new theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 493-525, August.
    59. Ung, Sze Nie & Gebka, Bartosz & Anderson, Robert D.J., 2023. "Is sentiment the solution to the risk–return puzzle? A (cautionary) note," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    60. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A comprehensive look at financial volatility prediction by economic variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
    61. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    62. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2023. "An analysis of the return–volume relationship in decentralised finance (DeFi)," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 236-254.
    63. Lee, Cheng F & Rui, Oliver M, 2000. "Does Trading Volume Contain Information to Predict Stock Returns? Evidence from China's Stock Markets," Review of Quantitative Finance and Accounting, Springer, vol. 14(4), pages 341-360, June.
    64. Ni, Zhong-Xin & Wang, Da-Zhong & Xue, Wen-Jun, 2015. "Investor sentiment and its nonlinear effect on stock returns—New evidence from the Chinese stock market based on panel quantile regression model," Economic Modelling, Elsevier, vol. 50(C), pages 266-274.
    65. Şoiman, Florentina & Dumas, Jean-Guillaume & Jimenez-Garces, Sonia, 2023. "What drives DeFi market returns?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    66. Huang, Dashan & Li, Jiangyuan & Wang, Liyao, 2021. "Are disagreements agreeable? Evidence from information aggregation," Journal of Financial Economics, Elsevier, vol. 141(1), pages 83-101.
    67. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2019. "Liquidity, surprise volume and return premia in the oil market," Energy Economics, Elsevier, vol. 77(C), pages 93-104.
    68. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    69. Jan Schneider, 2009. "A Rational Expectations Equilibrium with Informative Trading Volume," Journal of Finance, American Finance Association, vol. 64(6), pages 2783-2805, December.
    70. Luo, Dan & Mao, Yipeng, 2021. "Fundamental volatility and informative trading volume in a rational expectations equilibrium," Economic Modelling, Elsevier, vol. 105(C).
    71. Chen, Juan & Ma, Feng & Qiu, Xuemei & Li, Tao, 2023. "The role of categorical EPU indices in predicting stock-market returns," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 365-378.
    72. Rashid, Abdul, 2007. "Stock prices and trading volume: An assessment for linear and nonlinear Granger causality," Journal of Asian Economics, Elsevier, vol. 18(4), pages 595-612, August.
    73. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    74. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    75. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    76. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    77. Elena Ferrer & Julie Salaber & Anna Zalewska, 2016. "Consumer confidence indices and stock markets' meltdowns," The European Journal of Finance, Taylor & Francis Journals, vol. 22(3), pages 195-220, February.
    78. Bouri, Elie & Lau, Chi Keung Marco & Lucey, Brian & Roubaud, David, 2019. "Trading volume and the predictability of return and volatility in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 29(C), pages 340-346.
    79. Lehrer, Steven & Xie, Tian & Zhang, Xinyu, 2021. "Social media sentiment, model uncertainty, and volatility forecasting," Economic Modelling, Elsevier, vol. 102(C).
    80. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2021. "Investor sentiment and stock returns: Global evidence," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 365-391.
    81. Saatcioglu, Kemal & Starks, Laura T., 1998. "The stock price-volume relationship in emerging stock markets: the case of Latin America," International Journal of Forecasting, Elsevier, vol. 14(2), pages 215-225, June.
    82. Diego García, 2013. "Sentiment during Recessions," Journal of Finance, American Finance Association, vol. 68(3), pages 1267-1300, June.
    83. Wang, Jiang, 1994. "A Model of Competitive Stock Trading Volume," Journal of Political Economy, University of Chicago Press, vol. 102(1), pages 127-168, February.
    84. Kramer, Charles, 1999. "Noise trading, transaction costs, and the relationship of stock returns and trading volume," International Review of Economics & Finance, Elsevier, vol. 8(4), pages 343-362, November.
    85. Easley, David, et al, 1996. "Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-1436, September.
    86. Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
    87. Marta Vidal & Javier Vidal-García & Sabri Boubaker & Stelios Bekiros, 2024. "Short-term volatility timing: a cross-country study," Annals of Operations Research, Springer, vol. 336(3), pages 1681-1706, May.
    88. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    89. Beata Szetela & Grzegorz Mentel & Yuriy Bilan & Urszula Mentel, 2021. "The relationship between trend and volume on the bitcoin market," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(1), pages 25-42, March.
    90. Constantinos Antoniou & John A. Doukas & Avanidhar Subrahmanyam, 2016. "Investor Sentiment, Beta, and the Cost of Equity Capital," Management Science, INFORMS, vol. 62(2), pages 347-367, February.
    91. Numan Ülkü & Olena Onishchenko, 2019. "Trading volume and prediction of stock return reversals: Conditioning on investor types' trading," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 582-599, September.
    92. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. "Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    93. Eric Budish & Peter Cramton & John Shim, 2015. "Editor's Choice The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1547-1621.
    94. Felix Chan & Robert B. Durand & Joyce Khuu & Lee A. Smales, 2017. "The Validity of Investor Sentiment Proxies," International Review of Finance, International Review of Finance Ltd., vol. 17(3), pages 473-477, September.
    95. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.
    96. Chung, San-Lin & Hung, Chi-Hsiou & Yeh, Chung-Ying, 2012. "When does investor sentiment predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 217-240.
    97. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    98. Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
    99. Yu, Jianfeng & Yuan, Yu, 2011. "Investor sentiment and the mean-variance relation," Journal of Financial Economics, Elsevier, vol. 100(2), pages 367-381, May.
    100. Wang, Zhenxin & Wang, Shaoping & Yan, Yayi & Xia, Yingcun, 2025. "Examining Chinese volume–volatility nexus: A regime-switching perspective," Economic Modelling, Elsevier, vol. 144(C).
    101. Itamar Drechsler & Amir Yaron, 2011. "What's Vol Got to Do with It," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 1-45.
    102. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    103. Kao, Yu-Sheng & Zhao, Kai & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2024. "The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 524-542.
    104. Jiayu Huang & Yifan Wang & Yaojun Fan & Hexuan Li, 2022. "Gauging the effect of investor overconfidence on trading volume from the perspective of the relationship between lagged stock returns and current trading volume," International Finance, Wiley Blackwell, vol. 25(1), pages 103-123, April.
    105. Jennings, Robert H & Starks, Laura T & Fellingham, John C, 1981. "An Equilibrium Model of Asset Trading with Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 36(1), pages 143-161, March.
    106. Niklas Karlsson & George Loewenstein & Duane Seppi, 2009. "The ostrich effect: Selective attention to information," Journal of Risk and Uncertainty, Springer, vol. 38(2), pages 95-115, April.
    107. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    108. Frank, Murray Z. & Sanati, Ali, 2018. "How does the stock market absorb shocks?," Journal of Financial Economics, Elsevier, vol. 129(1), pages 136-153.
    109. Bremer, Marc & Sweeney, Richard J, 1991. "The Reversal of Large Stock-Price Decreases," Journal of Finance, American Finance Association, vol. 46(2), pages 747-754, June.
    110. Chen, Shiu-Sheng, 2012. "Revisiting the empirical linkages between stock returns and trading volume," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1781-1788.
    111. Gregory, Richard Paul, 2021. "What determines Manager and Investor Sentiment?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    112. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gebka, Bartosz & Wohar, Mark E., 2013. "Causality between trading volume and returns: Evidence from quantile regressions," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 144-159.
    2. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    3. Ngene, Geoffrey M. & Mungai, Ann Nduati, 2022. "Stock returns, trading volume, and volatility: The case of African stock markets," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. Panpan Wang & Tsungwu Ho & Yishi Li, 2020. "The Price-Volume Relationship of the Shanghai Stock Index: Structural Change and the Threshold Effect of Volatility," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    5. Bartosz Gębka, 2012. "The Dynamic Relation Between Returns, Trading Volume, And Volatility: Lessons From Spillovers Between Asia And The United States," Bulletin of Economic Research, Wiley Blackwell, vol. 64(1), pages 65-90, January.
    6. Koubaa, Yosra & Slim, Skander, 2019. "The relationship between trading activity and stock market volatility: Does the volume threshold matter?," Economic Modelling, Elsevier, vol. 82(C), pages 168-184.
    7. Gupta, Suman & Das, Debojyoti & Hasim, Haslifah & Tiwari, Aviral Kumar, 2018. "The dynamic relationship between stock returns and trading volume revisited: A MODWT-VAR approach," Finance Research Letters, Elsevier, vol. 27(C), pages 91-98.
    8. Elina Pradkhan, 2016. "Information Content of Trading Activity in Precious Metals Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(5), pages 421-456, May.
    9. Wang, Zijun & Qian, Yan & Wang, Shiwen, 2018. "Dynamic trading volume and stock return relation: Does it hold out of sample?," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 195-210.
    10. Wang, Zijun, 2021. "The high volume return premium and economic fundamentals," Journal of Financial Economics, Elsevier, vol. 140(1), pages 325-345.
    11. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    12. Lee, Jaeram & Lee, Geul & Ryu, Doojin, 2018. "Difference in the intraday return-volume relationships of spots and futures: A quantile regression approach," Economics Discussion Papers 2018-68, Kiel Institute for the World Economy (IfW Kiel).
    13. Park, Jin Suk & Newaz, Mohammad Khaleq, 2021. "Liquidity and short-run predictability: Evidence from international stock markets," Global Finance Journal, Elsevier, vol. 50(C).
    14. Gebka, Bartosz, 2006. "Leaders and Laggards: International Evidence on Spillovers in Returns, Variance, and Trading Volume," Working Paper Series 2006,1, European University Viadrina Frankfurt (Oder), The Postgraduate Research Programme Capital Markets and Finance in the Enlarged Europe.
    15. Abhinava Tripathi, 2021. "The Arrival of Information and Price Adjustment Across Extreme Quantiles: Global Evidence," IIM Kozhikode Society & Management Review, , vol. 10(1), pages 7-19, January.
    16. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
    17. Kao, Yu-Sheng & Zhao, Kai & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2024. "The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 524-542.
    18. Anirut Pisedtasalasai & Abeyratna Gunasekarage, 2007. "Causal and Dynamic Relationships among Stock Returns, Return Volatility and Trading Volume: Evidence from Emerging markets in South-East Asia," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(4), pages 277-297, December.
    19. Hau, Liya & Zhu, Huiming & Shahbaz, Muhammad & Sun, Wuqin, 2021. "Does transaction activity predict Bitcoin returns? Evidence from quantile-on-quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    20. Mougoué, Mbodja & Aggarwal, Raj, 2011. "Trading volume and exchange rate volatility: Evidence for the sequential arrival of information hypothesis," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2690-2703, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:148:y:2025:i:c:s0264999325000720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.